
	

	

	

VMware	GemFire®	C++	Client	10.1

	

Rev:	10.1.3

	

	

©	Copyright	2020	VMware	Inc.	or	its	affiliates.	All	Rights	Reserved.

2
3
4
6

11
19
20
23
25
27
31
32
36
39
41
42
44
46
50
53
57
58
60
60
61
63
69
72
77
77
78

Table	of	Contents

Table	of	Contents
VMware	GemFire®	Native	Client	10.1	Documentation
GemFire	Native	Client	10.1	Release	Notes
System	Requirements
Upgrading	a	Native	Client	Application	From	Version	9	to	Version	10
Installing	the	Native	Library
Getting	Started	with	the	Native	Library
Put/Get/Remove	Example
Configuring	a	Client	Application
System	Level	Configuration
Configuring	the	Client	Cache
Configuring	Regions
Registering	Interest	for	Entries
Region	Attributes
Serializing	Data
VMware	GemFire®	PDX	Serialization
Using	the	PdxSerializable	Abstract	Class
PdxSerializable	Example
Remote	Queries
Continuous	Queries
Security:	Authentication	and	Encryption
Authentication
TLS/SSL	Client-Server	Communication	Encryption
Set	Up	OpenSSL
Starting	and	stopping	the	client	and	server	with	SSL	in	place
Function	Execution
Transactions
System	Properties
Client	Cache	XML	Reference
Cache	Initialization	File:	XML	Essentials
Cache	Initialization	File	Element	Descriptions

©	Copyright	Pivotal	Software	Inc,	2013-2020 2 10.1

	

VMware	GemFire®	Native	Client	10.1	Documentation
Published	July	10,	2020.

The	VMware	GemFire®	Native	Client	is	a	library	that	provides	access	for	C++	and	Microsoft 	.NET™	clients
to	a	VMware	GemFire®	distributed	system.

See	the		Release	Notes	for	new	features	and	support	information	regarding	this	release.

	Upgrading	a	Native	Client	Application	From	Version	9	to	Version	10	provides	help	with	the	upgrade	from
Native	Client	9.x	to	Native	Client	10.x.

See	the	API	docs	for	API	details:

	C++	API	docs

	.NET	API	docs

The	Apache	Geode	community	has	a	host	of	examples	based	on	the	latest	C++	and	.NET	APIs
(https://github.com/apache/geode-native/tree/develop/examples).

See	the		VMware	GemFire®	User	Guide 	for	information	regarding	the	server.

®

©	Copyright	Pivotal	Software	Inc,	2013-2020 3 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/gemfire-native-client-cpp/cppdocs
http://docs-gemfire-native-cpp-staging.cfapps.io/101/gemfire-native-client-cpp/dotnetdocs
https://github.com/apache/geode-native/tree/develop/examples
http://docs-gemfire-native-cpp-staging.cfapps.io/101/gemfire-native-client-cpp/gemfireman/about_gemfire.html

	

GemFire	Native	Client	10.1	Release	Notes

	What’s	New	in	GemFire	Native	Client	10.1
VMware	GemFire®	Native	Client	10.1	is	based	on	Apache	Geode	1.11.

Version	10.1	includes	a	number	of	improvements:

SSL	enhancement	-	support	for	certificate	chaining,	better	one-way	SSL	consistency

Compatibility	issues	with	various	versions	of	PCC

Performance	improvements

Bug	fixes.	See		Issues	Resolved	in	Native	Client	10.1

The	Apache	Geode	community	has	a	host	of	examples	based	on	the	latest	C++	and	.NET	APIs
(https://github.com/apache/geode-native/tree/develop/examples).

	Issues	Resolved	in	Native	Client	10.1
This	section	describes	issues	resolved	in	VMware	GemFire®	Native	Client	version	10.1	and	its	patch
releases,	beginning	with	the	most	recent	release.

	Issues	Resolved	in	Native	Client	10.1.3

	GEODE-8297,	GEMNC-472:	Increased	default	timeout	value	for	authorization	to	accommodate	networks
with	higher	latency.

	Issues	Resolved	in	Native	Client	10.1.2

	GEODE-7930:	Endpoint	names	are	no	longer	truncated	to	99	characters.	The	Native	Client	now	supports
endpoint	names	that	meet	the	RFC	2181	standard	of	255	characters	for	fully-qualified	domain	names.
This	solution	also	corrects	a	spurious	“Failed	to	add	endpoint”	error	that	was	issued	when,	in	fact,	no
error	had	occurred.

	Issues	Resolved	in	Native	Client	10.1.1

	GEODE-8015,	GEMNC-470:	Added	debugging	symbols	to	the	released	libraries.	The	Native	Client	release

©	Copyright	Pivotal	Software	Inc,	2013-2020 4 10.1

https://github.com/apache/geode-native/tree/develop/examples

for	Windows	now	includes	a	.pdb	symbol	file.	On	Linux,	the	symbols	are	now	embedded	in	the	shared
library	(.so	file).

	Issues	Resolved	in	Native	Client	10.1.0

	GEODE-3415:	Added	support	for	certificate	chain	files	in	SSL	configuration.

	GEODE-7437:	Enforced	recognition	of	trust	store	in	one-way	SSL.

	GEODE-5708,	GEMNC-465:	Fixed	an	issue	with	an	overly-aggressive	memory	free-up	operation	in
partitioned	regions	that	caused	the	putAll()	operation	to	fail	when	called	a	second	time	due	to	a	closed
server	connection.

	GEODE-6576:	Improved	handling	of	stale	connections	to	partitioned	regions.

	GEODE-6624,	GEMNC-438:	Improved	handling	of	data	serialization	error	reporting	by	fixing	a	problem
caused	by	nested	exceptions.

	GEODE-6800,	GEMNC-448:	Fixed	a	gcc	compilation	error	related	to	CacheableFileName	objects.

	GEODE-6835,	GEMNC-442:	Added	retry	logic	to	prevent	spurious	server-side	SecurityManager	errors.

	GEODE-7019:	Fix	closing	of	idle	connections	in	native	client.

	GEODE-7061:	Reduced	the	number	of	connections	created	during	high	load	conditions	with	many
threads.

	GEODE-7299:	Fixed	a	memory	leak	associated	with	PDX	data	serialization.

	GEODE-7316:	Fixed	a	race	condition	that	could	cause	a	client	app	to	crash	on	shutdown.

	GEODE-7418,	GEMNC-464:	Fixed	an	issue	with	PDX	serialization/deserialization	of	JSON	objects.

	GEODE-7476,	GEODE-7509,	GEMNC-436:	Fixed	a	memory	leak	that	appeared	during	repeated	queries.

	GEODE-7783:	Optimized	connection	handling	to	improve	performance.

©	Copyright	Pivotal	Software	Inc,	2013-2020 5 10.1

	

System	Requirements
In	this	topic

	GemFire	Compatibility

	Application	Compatibility

	.NET	Compatibility

	Host	Machine	Requirements

	Windows	Support

	Linux	Support

	PCF	Support

	Software	Requirements	for	Using	SSL

The	VMware	GemFire®	native	client	provides	access	for	C++	and	Microsoft®	.NET™	clients	to	the	VMware
GemFire®	distributed	system.	It	operates	on	platforms	running	Microsoft	Windows,	Linux	(Intel),	and
Pivotal	Cloud	Foundry.

	GemFire	Compatibility
The	GemFire	Native	Client	supports	applications	that	communicate	with	GemFire	servers.	Native	Client
version	10.1	works	with	Pivotal	GemFire	versions	9.0.0	and	later.

The	following	table	shows	which	versions	of	the	Native	Client	are	compatible	with	the	various	versions	of
the	GemFire	server.

GemFire	Native	Client	Version GemFire	Server	Version

GemFire	Native	Client	10 GemFire	Server	10

GemFire	Native	Client	10	
GemFire	Native	Client	9.1,	9.2

GemFire	Server	9.x

GemFire	Native	Client	9.1	
GemFire	Native	Client	8.2

GemFire	Server	8.2

	Application	Compatibility
GemFire	Native	Client	is	compiled	using	64-bit	architectures	for	all	operating	systems.	Linking	with	32-bit

©	Copyright	Pivotal	Software	Inc,	2013-2020 6 10.1

applications	is	not	supported.

Supported	Platforms:	C++	Client
The	GemFire	Native	Client	supports	applications	that	run	in	the	following	client	environments:

Platform Version

Linux Red	Hat	Enterprise	Linux	(RHEL)	7

Linux Ubuntu	16	(Xenial)

Windows	Desktop 10

Windows	Server 2016

Pivotal	Cloud	Foundry PCF	2.3.2+

Supported	Platforms:	.NET	Client

Platform Version

Windows	Desktop 10

Windows	Server 2016

Pivotal	Cloud	Foundry PCF	2.3.2+

	.NET	Compatibility
For	Windows	applications,	a	Microsoft	.NET	Framework	must	be	installed	to	support	the	C++/CLI
(Common	Language	Infrastructure)	library	for	the	native	client.

The	client	supports	.NET	4.5.2	(and	newer)	and	Visual	Studio	2017	(and	newer)	for	compiling	.NET
applications	on	Windows.	It	does	not	support	.NET	Core.	For	more	information	on	the	features	of	.NET
and	Visual	Studio	Community	Edition	2017,	see	the		Visual	Studio	2017	web	page .

	Host	Machine	Requirements
Each	machine	that	runs	a	native	client	must	meet	the	following	requirements:

A	system	clock	set	to	the	correct	time	and	a	time	synchronization	service	such	as	Network	Time
Protocol	(NTP).	Correct	time	stamps	permit	the	following	activities:

©	Copyright	Pivotal	Software	Inc,	2013-2020 7 10.1

https://visualstudio.microsoft.com/vs/older-downloads/#visual-studio-2017-family

Logs	that	are	useful	for	troubleshooting.	Synchronized	time	stamps	ensure	that	log	messages	from
different	hosts	can	be	merged	to	reproduce	an	accurate	chronological	history	of	a	distributed	run.
Aggregate	product-level	and	application-level	time	statistics.
Accurate	monitoring	of	the	system	with	scripts	and	other	tools	that	read	the	system	statistics	and
log	files.

The	host	name	and	host	files	are	properly	configured	for	the	machine.

	Windows	Support
For	Windows	C++	applications,	the	GemFire	Native	Client	library,	 pivotal-gemfire.dll ,	requires	the		Microsoft
Visual	C++	2017	Redistributable	Package,	which	you	can	find	on	the		Visual	Studio	2017	web	page .
Scroll	down	to	“Redistributables	and	Build	Tools”	and	select	“Microsoft	Visual	C++	Redistributable	for
Visual	Studio	2017”,	and	be	sure	to	select	the	“x64”	version.	Install	it	on	all	machines	that	will	run	your
C++	application.

	Linux	Support
For	Linux,	you	can	verify	that	you	meet	the	native	client	dependencies	at	the	library	level	by	using	the	
ldd 	tool	and	entering	this	command:

$	ldd	$client-installdir/lib/libpivotal-gemfire.so

where	client-installdir	is	the	location	in	which	you	have	installed	the	client.

The	following	libraries	are	external	dependencies	of	the	native	library,	 libpivotal-gemfire.so .	Verify	that	the	
ldd 	tool	output	includes	all	of	these:

libdl.so.2

libm.so.6

libpthread.so.0

libc.so.6

libz.so.1

	Disabling	Syn	Cookies	on	Linux

Many	default	Linux	installations	use	SYN	cookies	to	protect	the	system	against	malicious	attacks	that

©	Copyright	Pivotal	Software	Inc,	2013-2020 8 10.1

https://visualstudio.microsoft.com/vs/older-downloads/#visual-studio-2017-family

flood	TCP	SYN	packets.	The	use	of	SYN	cookies	dramatically	reduces	network	bandwidth,	and	can	be
triggered	by	a	running	VMware	GemFire®	distributed	system.

To	disable	SYN	cookies	permanently:

1.	 Edit	the	 /etc/sysctl.conf 	file	to	include	the	following	line:

net.ipv4.tcp_syncookies	=	0

Setting	this	value	to	zero	disables	SYN	cookies.

2.	 Reload	 sysctl.conf :

$	sysctl	-p

	PCF	Support
Pivotal	Cloud	Foundry	supports	.NET	and	C++	native	client	applications.

PCF	versions	2.3.2	and	higher	include	the	Microsoft	VS	2017	C++	Redistributable	DLLs.

	PCF	.NET	Requirements

PCF	2.3.2	or	newer

Windows	Server	2016

.NET	4.5.2	or	newer

To	run	your	cloud	native	.NET	application	on	PCF:

1.	 The	 Pivotal.GemFire.dll 	must	be	in	the	 output 	folder	of	your	.NET	project.

2.	 Rebuild	your	application.

3.	 From	Visual	Studio,	publish	your	application	to	a	filesystem.

4.	 From	within	the	published	filesystem,	use	 cf push 	to	deploy	your	application	to	PCF	as	you
would	other	.NET	applications.

	PCF	C++	Requirements

©	Copyright	Pivotal	Software	Inc,	2013-2020 9 10.1

PCF	2.3.2	or	newer

Ubuntu	or	Windows	2017	stem	cells

To	run	your	cloud	native	C++	application	on	PCF:

1.	 The	runtime	libraries	 pivotal-gemfire.dll 	and	 cryptoImpl.dll 	must	be	in	the	path	of	your
C++	application.

2.	 Use	 cf push 	to	deploy	your	application	to	PCF	as	you	would	other	C++	applications.

	Software	Requirements	for	Using	SSL
If	you	plan	on	using	SSL	in	your	VMware	GemFire®	native	client	and	server	deployment,	you	will	need	to
download	and	install	OpenSSL.	The	VMware	GemFire®	native	client	requires	OpenSSL	version	1.1.1.

For	Windows	platforms,	you	can	use	either	the	regular	or	the	OpenSSL	“Light”	version.

In	addition,	make	sure	that	your	system	environment	variables	have	been	configured	to	include
OpenSSL.

©	Copyright	Pivotal	Software	Inc,	2013-2020 10 10.1

	

Upgrading	a	Native	Client	Application	From	Version	9	to
Version	10
GemFire	Native	Client	Version	10	introduces	breaking	changes	for	Version	9	applications.	Updating	your
client	applications	will	require	more	intervention	than	merely	recompiling.

In	general,	you	will	have	best	performance	and	reliability	if	clients	and	servers	both	run	the	latest
versions	of	their	respective	software.

GemFire	server	and	client	software	releases	follow	similar	numbering	schemes,	but	they	are	not	released
in	lockstep.	The	following	diagram	illustrates	the	interoperability	between	recent	versions	of	GemFire
server	software	and	GemFire	Native	Client	software.

Overview	of	Changes
VMware	GemFire®	Native	Client	improvements	and	new	features	include:

A	modernized	C++	API	that	constitutes	a	big	step	forward	to	fully	supporting	C++	11.

Local	memory	management	has	been	greatly	improved,	as	well	as	the	adoption	of	a	new	cache	model
that	allows	for	multiple	cache	objects	to	exist	in	a	given	process	space.

The	.NET	interface	benefits	from	all	the	enhancements	made	in	the	C++	interface.

The	Native	Client	now	supports	IIS	application	domains	and	Pivotal	Cloud	Foundry.

A	new	architecture	that	allows	for	more	flexible	client-side	data	models

Improvements	to	the	reflection-based	AutoSerializer

The	Apache	Geode	community	has	a	host	of	examples	based	on	the	latest	C++	and	.NET	APIs
(https://github.com/apache/geode-native/tree/develop/examples).

For	examples	of	source	changes	see	the		Native	Client	9	to	Native	Client	10	Upgrade	Sample .

©	Copyright	Pivotal	Software	Inc,	2013-2020 11 10.1

https://github.com/apache/geode-native/tree/develop/examples
http://docs-gemfire-native-cpp-staging.cfapps.io/101/gemfire-native-client-cpp/upgrade-example-cpp.html

These	examples	show	both	the	original	and	new	API	usage,	and	may	be	helpful	as	starting	points	for
upgrading	your	application	to	Native	Client	10.	To	see	details	for	upgrading	your	particular	API	usage
refer	to	the	Native	Client	10	API	documentation:

	C++	API	docs

	.NET	API	docs

Compiler	Upgrade
Using	Version	10	of	the	Native	Client	with	your	application	requires	a	C++11-compatible	compiler.

Removal	of	Cache	Singleton
A	major	change	in	Native	Client	10	is	the	change	from	a	singleton-based	design	to	an	instance-based
design.	This	gives	developers	greater	programming	flexibility,	as	client	cache	instances	can	have
completely	independent	access	to	the	GemFire	data	grid.

Multiple	client-side	instances	of	Cache	do	not	automatically	share	objects	with	one	another.

The	cache	creation	process	in	Native	Client	10	follows	a	different	pattern	and	now	returns	an	object	(see
examples).	Each	also	requires	a	pool.	Native	Client	10	further	simplifies	the	cache	creation	and	system
architecture	with	the	removal	of	 DistributedSystem .	An	instance	of	 DistributedSystem 	is	no	longer	needed	to
manage	an	application’s	“connecting”	into	the	VMware	GemFire®	Java	server.	This	is	now	managed
through	a	Cache	instance.

A	note	to	.NET	users	of	the	Native	Client:	users	can	pass	in	an	instance	of	their	authorization	class	into	the
CacheFactory	(CacheFactory.SetAuthInitialize(app_auth);).

©	Copyright	Pivotal	Software	Inc,	2013-2020 12 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/gemfire-native-client-cpp/cppdocs
http://docs-gemfire-native-cpp-staging.cfapps.io/101/gemfire-native-client-cpp/dotnetdocs

Serialization	Interface	Changes
The	Native	Client	serialization	APIs	for	both	C++	and	.NET	have	been	changed	to	more	closely	resemble
the	behavior	of	the	GemFire	Java	client.	The	serializable	API	has	been	refactored	into	data	serializable
and	PDX	serializable	interfaces.	In	addition,	to	be	consistent	with	the	Java	Server,	the	new	data
serializable	interface	does	not	have	fixed	 ClassId 	properties.	 ClassId 	is	now	a	parameter	passed	in	to
register	a	given	type.

C++	Standardization
In	Native	Client	10,	many	version	9	utility	classes,	such	as	shared	pointers,	have	been	replaced	by	their
equivalents	from	the	C++11	standard	library.

One	of	the	biggest	changes	made	in	Native	Client	10	is	the	replacement	of	custom	
apache::geode::client::SharedPtr 	with	 std::shared_ptr .	The	custom	base	object	 apache::geode::client::SharedBase 	has
been	removed	and	is	no	longer	a	required	derivation	to	make	library	objects	reference	counted;	instead
objects	may	simply	be	wrapped	by	a	 std::shared_ptr<> .	Upgrading	to	Native	Client	10	requires	replacing	all
*Ptr	types	with	their	C++11	replacements.

For	example,	replace

RegionPtr	regionPtr;	

with

std::shared_ptr<Region>	regionPtr;

Other	adopted	C++11	standards	include:

All	time	values	now	use	std::chrono.	For	example,	 std::chrono 	replaces	 CacheableDate

Longs	and	ints	are	now	replaced	with	language	primitives	of	explicit	size,	such	as	 int32_t 	and	
int16_t .

std:string 	replaces	 char *

std	container	classes

PDXSerializable::objectSize() 	and	 DataSerializable::objectSize() 	return	 size_t

Properties	use	 std::unordered 	map

©	Copyright	Pivotal	Software	Inc,	2013-2020 13 10.1

Enum	Classes
The	following	Version	9	Enums	are	now	defined	as	C++11	Enum	classes	in	the	Version	10	client:

CqOperation

CqState

ExpirationAction

PdxFieldTypes

Exceptions
GemFire	Native	Client	Exceptions,	which	were	implemented	as	macros	in	v9,	are	now	classes	that	inherit
from	 std::exception .

Object	Oriented	Design	Patterns
Native	Client	10	has	adopted	many	more	object	oriented	design	patterns.	For	example,	the	 CacheFactory
now	uses	a	builder	pattern	and	returns	a	value	rather	than	a	pointer.

Other	examples	of	pattern-oriented	changes:

Replace	 apache::geode::client::PoolPtr 	with	
std::shared_ptr<apache::geode::client::Pool>

Replace	 apache::geode::client::RegionPtr 	with	
std::shared_ptr<apache::geode::client::Region>

Replace	 apache::geode::client::EntryEventPtr 	with	
std::shared_ptr<apache::geode::client::EntryEvent>

Replace	 apache::geode::client::CachePtr 	with	
std::unique_ptr<apache::geode::client::Cache>

PdxSerializable	toData/fromData	are	now	passed	to	PdxWriter/PdxReader	as	references

Execution	factory	returns	value	type

Cache::createPdxInstanceFactory 	returns	object

CqQuery::getCqAttributesMutator 	returns	value

Cache::createDataInput/Output 	returns	value

©	Copyright	Pivotal	Software	Inc,	2013-2020 14 10.1

Initialization	Files
The	best	practice	for	most	applications	is	to	set	properties	and	parameters	programmatically.	For	clients
that	use	the	older,	file-based	scheme,	the	following	changes	apply	to	the	system	initialization	files,	
geode.properties 	and	 cache.xml :

In	both	files,	parameters	specifying	times	should	include	units	(s ,	 m ,	 h ,	etc.).

For	the	 cache.xml 	file,	the	schema	name	space	and	location	have	changed.	Use

		<client-cache
				xmlns="http://geode.apache.org/schema/cpp-cache"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation="http://geode.apache.org/schema/cpp-cache
						http://geode.apache.org/schema/cpp-cache/cpp-cache-1.0.xsd"
				version="1.0">

Other	Changes
The	 $GFCPP 	environment	variable	is	no	longer	needed

enable-chunk-handler-thread 	now	defaults	to	 false 	and	replaces	
disable-chunk-handler-thread

Native	Client	10	now	supports	OpenSSL

Statistics	and	StatisticsFactory	are	no	longer	available

.NET	API	Changes
These	.NET	API	classes	have	changed	as	follows:

	CacheFactory

Creation	was	via	static	method	 CreateCacheFactory ,	now	created	via	 new

Authorization	implementation	now	is	a	setter	on	factory	called	 SetAuthInitialize

Appdomain 	property	is	no	longer	a	supported	property

GetAnyInstance() 	is	no	longer	supported	(there	is	no	more	global	singleton).	Make	method	calls	on
the	specific	instance	you	are	working	with

	PoolFactory

©	Copyright	Pivotal	Software	Inc,	2013-2020 15 10.1

Creation	was	obtained	via	static	method	 PoolManager.CreateFactory ,	now	via	 GetPoolFactory
method	on	 Cache

SetEntryTimeToLive 	-	was	 int ,	now	uses	 TimeSpan

SetEntryIdleTimeout	-	was	 int ,	now	uses	 TimeSpan

SetRegionTimeToLive	-	was	 int ,	now	uses	 TimeSpan

SetRegionIdleTimeout	-	was	 int ,	now	uses	 TimeSpan

	RegionFactory

SetEntryTimeToLive 	-	was	 int ,	now	uses	 TimeSpan .

	IGeodeSerializable

The	 IGeodeSerializable 	interface	has	been	renamed	to	 IDataSerializable .

.NET	Session	State	Provider
The	Native	Client	10	version	of	the	Session	State	Provider	(SSP)	only	requires	configuration	to	be	set	in	
Web.Config 	and	the	deployment	of	server-side	functions.

C++	API	Changes
The	following	classes	have	changed	or	are	no	longer	present	in	the	current	release.

Version	9:	Removed	Class Version	10:	Recommended	Action

Assert N/A

AttributesFactory Replace	with	RegionAttributesFactory

CacheableArrayType,
CacheableContainerType,
CacheableKeyType

Converted	to	templates.	See
INSTALL_DIR/include/geode/CacheableBuiltins.hpp

DistributedSystem Used	internally

EqualToSB No	longer	needed;	use	std	types

GeodeTypeIds Removed	from	public	API

HashMapOfCacheable Replace	with	std::hash

HashMapOfSharedBase Replace	with	std::hash

©	Copyright	Pivotal	Software	Inc,	2013-2020 16 10.1

HashSB Replace	with	std::hash

HashSetOfCacheableKey Replace	with	std::hash

HashSetOfSharedBase Replace	with	std::shared_ptr<T>

HashSetT Replace	with	std::hash

InternalCacheTransactionManager2PC Removed	from	public	API

Log Use	LogLevel	at	cache	creation

LogFn Use	LogLevel	at	cache	creation

LogVarargs Use	LogLevel	at	cache	creation

NullSharedBase Replace	with	nullptr

SelectResultsIterator Replace	with	ResultsCollector

SharedArrayPtr Replace	with	std::shared_ptr<T>

SharedBase
Abstract	base	class	no	longer	needed.	Replace	with
std::shared_ptr<T>

SharedPtr Replace	with	std::shared_ptr<T>

SPEHelper
Exception	helper	no	longer	needed	after	move	from
SharedPtr	to	std::shared_ptr

VectorOfCacheable std::vector<std::shared_ptr<T>>

VectorOfCacheableKey std::vector<std::shared_ptr<T>>

VectorOfSharedBase std::vector<std::shared_ptr<T>>

VectorT std::vector<T>

Version	9:	Removed	Class Version	10:	Recommended	Action

The	following	classes	have	changed	or	new	in	the	current	release.

New	or	Renamed	Class Summary	of	Changes

AuthenticatedView Replaces	AuthenticatedCache	in	v9	API.	Used	for	multi-user	authentication.

DataSerializable
An	interface	for	objects	whose	state	can	be	written/read	as	primitive	types.
Supersedes	Serializable,	which	is	now	the	superclass	of	all	user	objects	in
the	cache	that	can	be	serialized.

DefaultResultCollector
Default	class	that	gathers	results	from	function	execution.	The
ResultCollector	interface	also	changed.

LogLevel Method	returns	log	level.

RegionAttributesFactory Replaces	AttributesFactory

©	Copyright	Pivotal	Software	Inc,	2013-2020 17 10.1

RegionShortcut Enum	class	holding	all	region	types	(PROXY,	CACHING_PROXY,
CACHING_PROXY_ENTRY_LRU,	LOCAL_ENTRY_LRU)

TypeRegistry Class	for	registering	a	custom	serializable	type.

New	or	Renamed	Class Summary	of	Changes

©	Copyright	Pivotal	Software	Inc,	2013-2020 18 10.1

	

Installing	the	Native	Library
Install	the	native	client	by	extracting	the	contents	of	the	distribution	archive	and	setting	up	the
environment.

Installation	Prerequisites

Before	installing	the	GemFire	native	client,	confirm	that	your	system	meets	the	hardware	and	software
requirements	described	in		GemFire	Native	Client	System	Requirements.

Copy	and	Uncompress	the	Distribution	Archive

1.	 In	a	browser,	navigate	to	the		Pivotal	GemFire	download	page .

2.	 From	the		Releases:	pull-down	menu,	select	the	most	recent	version	of	VMware	GemFire®	Native
Client.

3.	 Expand	the	entry	in	the		Release	Download	Files	dialog	box,	select	the	version	that	best	suits	your
development	platform,	and	download	it.

4.	 Move	the	downloaded	archive	to	the	local	directory	or	folder	in	which	you	wish	to	install	the	Native
Client	libraries.	For	ease	of	use,	choose	a	well-known	location:

On	Linux,	/usr/local
On	Windows,	C:\Program	Files

5.	 Uncompress	the	distribution	archive,	which	may	be	a	ZIP	archive	or	a	compressed	tar	file	(.tar.gz	or
.tgz).	For	example:

$	unzip	pivotal-gemfire-nativeclient-windows-64bit-10.x.y.zip

or

$	tar	xvzf	pivotal-gemfire-nativeclient-linux-64bit-10.x.y.tar.gz

6.	 For	ease	of	use,	rename	the	resulting	directory	to	 nativeclient .

©	Copyright	Pivotal	Software	Inc,	2013-2020 19 10.1

https://network.pivotal.io/products/pivotal-gemfire

	

Getting	Started	with	the	Native	Library
In	this	topic

	Set	Up	Your	Development	Environment

	Establish	Access	to	a	VMware	GemFire®	Cluster
	Connecting	to	the	Server

	Application	Development	Walkthrough

	Programming	Examples

To	use	the	VMware	GemFire®	Native	Library	for	developing	VMware	GemFire®	client	applications:

Obtain	a	distribution	of	the	Native	library	and	install	it	on	your	development	platform.

Set	up	your	development	environment	with	the	tools	you	need,	such	as	a	compiler	and	an	OpenSSL	security	library.

Establish	access	to	a	new	or	existing	VMware	GemFire®	cluster.

Write	your	client	application	using	the	VMware	GemFire®	native	library	to	interact	with	the	VMware	GemFire®	server.

	Set	Up	Your	Development	Environment
You	will	need	some	essential	tools,	such	as	a	compiler	and	a	linker.	Your	compiler	must	have	access	to	the	Native	Client
header	files,	and	the	linker	must	have	access	to	the	Native	Client	libraries.	The	header	files	and	libraries	are	located	in
the	Native	Client	installation	directory.

	Establish	Access	to	a	VMware	GemFire®	Cluster
As	you	develop	your	application,	you	will	need	access	to	a	VMware	GemFire®	cluster.	Your	client	application	connects	to
a	VMware	GemFire®	cluster	by	specifying	the	address	(host	name	or	IP	address)	and	port	number	of	one	or	more
locators,	and	the	name	of	a	region	that	also	exists	on	the	cluster.	The	client	API	establishes	a	pool	of	these	network
connections	for	your	client	application	to	use.

You	can	choose	whether	to	use	a	large,	remote,	production-quality	cluster;	a	small,	local,	development	cluster;	or
something	in-between,	such	as	a	testing	or	experimental	lab	installation.

In	the	VMware	GemFire®	User’s	Guide,	see		Configuring	and	Running	a	Cluster 	and		Client/Server	Configuration 	for
instructions	on	setting	up	and	starting	the	cluster	for	a	client/server	configuration.

	Connecting	to	the	Server

To	connect	to	a	server,	your	application	must	follow	these	steps:

1.	 Instantiate	a	 CacheFactory ,	setting	characteristics	of	interest	(for	example,	 log-level).

©	Copyright	Pivotal	Software	Inc,	2013-2020 20 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/getting-started/serverman/configuring/chapter_overview.html
http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/getting-started/serverman/topologies_and_comm/cs_configuration/chapter_overview.html

2.	 Create	a	cache	and	use	it	to	instantiate	a	 PoolFactory ,	specifying	the	hostname	and	port	for	the	server	locator.

3.	 Create	a	named	pool	of	network	connections.

4.	 Instantiate	a	region	of	the	desired	type	(usually	CACHING_PROXY	or	PROXY)	and	connect	it	by	name	to	its
counterpart	on	the	server.

Once	the	connection	pool	and	the	shared	region	are	in	place,	your	client	application	is	ready	to	share	data	with	the
server.

	Server	Connection:	C++	Example

This	example	of	connecting	to	the	server	is	taken	from	the	C++	 put-get-remove 	example.

Instantiate	a	 CacheFactory 	and	set	its	characteristics:

		auto	cacheFactory	=	CacheFactory();													//	instantiate	cache	factory
		cacheFactory.set("log-level",	"none");										//	set	cache	log-level	characteristics

Create	a	cache	and	use	it	to	instantiate	a	 PoolFactory :

		auto	cache	=	cacheFactory.create();																									//	create	cache
		auto	poolFactory	=	cache.getPoolManager().createFactory();		//	instantiate	pool	factory

		poolFactory.addLocator("localhost",	10334);																	//	add	locator	to	pool	factory

Create	a	named	pool	of	network	connections,	and	instantiate	a	region	of	the	desired	type:

		auto	pool	=	poolFactory.create("pool");																					//	create	a	pool	called	"pool"	that	knows	where	the	server	is
		auto	regionFactory	=	cache.createRegionFactory(RegionShortcut::PROXY);	//	instantiate	region	factory	with	PROXY	characteristics
		auto	region	=	regionFactory.setPoolName("pool").create("example_userinfo");	//	create	a	connection	to	the	region	"example_userinfo"	on	the	server

See	the	VMware	GemFire®	User	Guide	section		Configuring	a	Client/Server	System 	for	more	details.

	Application	Development	Walkthrough

The		C++	App	Development	Walkthrough 	describes	how	to	set	up	a	native	client	development	environment	using
CMake.

	Programming	Examples
The	VMware	GemFire®	Client	build	provides	a	set	of	programming	examples	to	help	you	understand	the	client	API.	The	
examples 	directory	contains	CMake	files	and	a	 cpp 	subdirectory	containing	C++	examples.	The	Windows	build	also
includes	a	 dotnet 	subdirectory	containing	C#	examples.

CMake	files	are	located	at	each	level	of	the	directory	structure	to	allow	examples	to	be	built	individually	or	in	groups.

©	Copyright	Pivotal	Software	Inc,	2013-2020 21 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/getting-started/serverman/topologies_and_comm/cs_configuration/setting_up_a_client_server_system.html
http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/getting-started/app-dev-walkthrough-cpp.html

The	directory	structure	resembles	this	hierarchy	(some	entries	are	omitted	for	clarity):

MyProject/
		cmake/
		CMakeLists.txt
		examples/
				BUILD-EXAMPLES.md
				CMakeLists.txt
				CMakeLists.txt.in
				cmake/
				cpp/
						authinitialize/
						continuousquery/
						dataserializable/
						functionexecution/
						pdxserializable/
						pdxserializer/
						putgetremove/
						remotequery/
						sslputget/
						transaction/
				dotnet/
						authinitialize/
						continuousquery/
						dataserializable/
						functionexecution/
						pdxautoserializer/
						pdxserializable/
						putgetremove/
						remotequery/
						sslputget/
						transaction/

See	the	 BUILD-EXAMPLES.md 	file	for	detailed	instructions	on	building	and	executing	the	examples,	and	read	the	source
code	to	understand	how	the	examples	are	constructed.

See		Put/Get/Remove	Example	for	sample	code	showing	the	basics	of	how	a	client	application	connects	to	a	VMware
GemFire®	cluster	and	performs	basic	operations	on	a	remote	server.

©	Copyright	Pivotal	Software	Inc,	2013-2020 22 10.1

	

Put/Get/Remove	Example
In	this	topic

	Put/Get/Remove	Example	Code

The	native	client	release	contains	an	example	written	for	C++	showing	how	a	client	application	can
establish	a	connection	to	a	cluster	and	then	use	that	connection	to	perform	basic	operations	on	a	remote
server.	The	examples	are	located	in	 examples/cpp/putgetremove .

The	example	performs	a	sequence	of	operations,	displaying	simple	log	entries	as	they	run.

To	run	the	example,	follow	the	instructions	in	the	 README.md 	file	in	the	example	directory.

Review	the	source	code	in	the	example	directory	to	see	exactly	how	it	operates.

Begin	by	running	a	script	that	sets	up	the	server-side	environment	by	invoking	 gfsh 	commands	to
create	a	region,	simply	called	“example_userinfo.”

Run	the	example	client	application,	which	performs	the	following	steps:

Connects	to	the	server
Performs	region	put	operations	using	key/value	pairs
Uses	region	get	to	retrieve	the	values
Uses	region	remove	to	remove	the	values

	Put/Get/Remove	Example	Code
This	section	contains	code	snippets	showing	highlights	of	the	C++	put/get/remove	example.	They	are	not
intended	for	cut-and-paste	execution.	For	the	complete	source,	see	the	example	source	directory.

The	C++	example	creates	a	cache,	then	uses	it	to	create	a	connection	pool	and	a	region	object	(of	class	
Region).

©	Copyright	Pivotal	Software	Inc,	2013-2020 23 10.1

		auto	cacheFactory	=	CacheFactory();
		cacheFactory.set("log-level",	"none");
		auto	cache	=	cacheFactory.create();
		auto	poolFactory	=	cache.getPoolManager().createFactory();

		poolFactory.addLocator("localhost",	10334);
		auto	pool	=	poolFactory.create("pool");
		auto	regionFactory	=	cache.createRegionFactory(RegionShortcut::PROXY);
		auto	region	=	regionFactory.setPoolName("pool").create("example_userinfo");

The	client	then	populates	the	data	store	with	two	key/value	pairs.

		region->put("rtimmons",	"Robert	Timmons");
		region->put("scharles",	"Sylvia	Charles");

Next,	the	application	retrieves	the	stored	values	using	 Get 	operations.

		auto	user1	=	region->get("rtimmons");
		auto	user2	=	region->get("scharles");

Finally,	the	application	deletes	one	of	the	stored	values	using	the	 Remove 	method.

		if	(region->existsValue("rtimmons"))	{
				std::cout	<<	"rtimmons's	info	not	deleted"	<<	std::endl;
		}	else	{
				std::cout	<<	"rtimmons's	info	successfully	deleted"	<<	std::endl;
		}

©	Copyright	Pivotal	Software	Inc,	2013-2020 24 10.1

	

Configuring	a	Client	Application
In	this	topic

	Programmatic	Configuration	vs	XML	Configuration

	High	Availability	with	Server	Redundancy

You	can	configure	your	native	client	application:

Programmatically	in	your	app	code

Via	XML	files	and	properties	files	(see		Client	Cache	XML	Reference)

Through	a	combination	of	programmatic	and	file-based	approaches

This	section	describes	configuration	on	two	levels,	the	system	level	and	the	cache	level.	System	property
settings	describe	your	application’s	behavior,	while	cache	configuration	describes	data.

	Programmatic	Configuration	vs	XML	Configuration
Programmatic	configuration	enables	your	client	application	to	dynamically	adapt	to	changing	runtime
conditions.

In	contrast,	XML	configuration	externalizes	properties,	such	as	locator	addresses	and	pool	connection
details,	so	they	can	be	changed	without	requiring	that	you	recompile	your	application.

	C++	RegionFactory	Example

The	following	examples	illustrate	how	to	set	a	region’s	expiration	timeout	attribute	programmatically
and	through	XML.

Setting	a	property	programmatically:

				auto	regionFactory	=	cache.createRegionFactory(RegionShortcut::CACHING_PROXY);
				auto	region	=	regionFactory.setRegionTimeToLive(ExpirationAction::INVALIDATE,
																				std::chrono::seconds(120))
									.create("exampleRegion0");

XML	equivalent:

©	Copyright	Pivotal	Software	Inc,	2013-2020 25 10.1

		<region	name="exampleRegion0"	refid="CACHING_PROXY">
				<region-attributes	pool-name="default">
						<region-time-to-live>
								<expiration-attributes	timeout="120s"	action="invalidate"/>
						</region-time-to-live>
				</region-attributes>
		</region>

Tables	of	properties
See		System	Properties	for	a	list	of	system	properties	that	can	be	configured	programmatically	or	in	the	
geode.properties 	file.

	High	Availability	with	Server	Redundancy
When	redundancy	is	enabled,	secondary	servers	maintain	queue	backups	while	the	primary	server
pushes	events	to	the	client.	If	the	primary	server	fails,	one	of	the	secondary	servers	steps	in	as	primary	to
provide	uninterrupted	event	messaging	to	the	client.	To	configure	high	availability,	set	the	
subscription-redundancy 	in	the	client’s	pool	configuration.	This	setting	indicates	the	number	of	secondary
servers	to	use.	See	the	VMware	GemFire®	User	Guide	section		Configuring	Highly	Available	Servers 	for
more	details.

©	Copyright	Pivotal	Software	Inc,	2013-2020 26 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/configuring/serverman/developing/events/configuring_highly_available_servers.html

	

System	Level	Configuration
In	this	topic

	Attribute	Definition	Priority

	Search	Path	for	Multiple	Properties	Files

	Defining	Properties	Programmatically

	About	the	geode.properties	Configuration	File

	Configuration	File	Locations

	Using	the	Default	Sample	File

	Configuring	System	Properties	for	the	Client

	Running	a	Client	Out	of	the	Box

	Attribute	Definition	Priority
You	can	specify	attributes	in	different	ways,	which	can	cause	conflicting	definitions.	Applications	can	be
configured	programmatically,	and	that	has	priority	over	other	settings.

In	case	an	attribute	is	defined	in	more	than	one	place,	the	first	source	in	this	list	is	used:

Programmatic	configuration

Properties	set	at	the	command	line

current-working-directory/geode.properties 	file

native-client-installation-directory/defaultSystem/geode.properties 	file

defaults

The	 geode.properties 	files	and	programmatic	configuration	are	optional.	If	they	are	not	present,	no
warnings	or	errors	occur.	For	details	on	programmatic	configuration	through	the	 Properties 	object,	see
	Defining	Properties	Programmatically.

	Search	Path	for	Multiple	Properties	Files
The	client	and	cache	server	processes	first	look	for	their	properties	file	in	the	
native-client-installation-directory/defaultSystem 	directory,	then	in	the	working	directory.

©	Copyright	Pivotal	Software	Inc,	2013-2020 27 10.1

Any	properties	set	in	the	working	directory	override	settings	in	the	
native-client-installation-directory/defaultSystem/geode.properties 	file.

The	 geode.properties 	file	provides	information	to	the	client	regarding	the	expected	server	configuration.
Properties	set	in	this	file	(in	the	client	environment)	do	not	have	any	effect	on	the	server	itself.	Its	main
purpose	is	to	inform	the	client	application	as	to	how	to	communicate	with	the	server.

	Defining	Properties	Programmatically
You	can	pass	in	specific	properties	programmatically	by	using	a	 Properties 	object	to	define	the	non-
default	properties.

Example:

auto	systemProps	=	Properties::create();
systemProps->insert("statistic-archive-file",	"stats.gfs");
systemProps->insert("cache-xml-file",	"./myapp-cache.xml");
systemProps->insert("stacktrace-enabled",	"true");
auto	cache	=	CacheFactory(systemProps).create();				

	About	the	geode.properties	Configuration	File
The	 geode.properties 	file	provides	local	settings	required	to	connect	a	client	to	a	distributed	system,	along
with	settings	for	licensing,	logging,	and	statistics.	See		System	Properties.

	Configuration	File	Locations
A	client	looks	for	a	 geode.properties 	file	first	in	the	working	directory	where	the	process	runs,	then	in	
native-client-installation-directory/defaultSystem .	Use	the	 defaultSystem 	directory	to	group	configuration	files	or
to	share	them	among	processes	for	more	convenient	administration.	If	 geode.properties 	is	not	found,	the
process	starts	up	with	the	default	settings.

For	the	 cache.xml 	cache	configuration	file,	a	client	looks	for	the	path	specified	by	the	 cache-xml-file
attribute	in	 geode.properties 	(see		System	Properties).	If	the	 cache.xml 	is	not	found,	the	process	starts	with
an	unconfigured	cache.

	Using	the	Default	Sample	File

©	Copyright	Pivotal	Software	Inc,	2013-2020 28 10.1

A	sample	 geode.properties 	file	is	included	with	the	VMware	GemFire®	native	client	installation	in	the	
native-client-installation-directory/defaultSystem 	directory.

To	use	this	file:

1.	 Copy	the	file	to	the	directory	where	you	start	the	application.

2.	 Uncomment	the	lines	you	need	and	edit	the	settings	as	shown	in	this	example:

cache-xml-file=test.xml

3.	 Start	the	application.

	Default	geode.properties	File

#	Default	C++	distributed	system	properties
#	Copy	to	current	directory	and	uncomment	to	override	defaults.
#
##	Debugging	support,	enables	stacktraces	in		apache::geode::client::Exception.
#
#	The	default	is	false,	uncomment	to	enable	stacktraces	in	exceptions.
#stacktrace-enabled=true
#crash-dump-enabled=true
#
#
##	Cache	region	configuration
#
#cache-xml-file=cache.xml
#
##	Log	file	config
#
#log-file=gemfire_cpp.log
#log-level=config
#	zero	indicates	use	no	limit.
#log-file-size-limit=0
#	zero	indicates	use	no	limit.	
#log-disk-space-limit=0	
...

	Configuring	System	Properties	for	the	Client
The	typical	configuration	procedure	for	a	client	includes	the	high-level	steps	listed	below.

1.	 Place	the	 geode.properties 	file	for	the	application	in	the	working	directory	or	in	

©	Copyright	Pivotal	Software	Inc,	2013-2020 29 10.1

native-client-installation-directory/defaultSystem .

2.	 Place	the	 cache.xml 	file	for	the	application	in	the	desired	location	and	specify	its	path	using	the	
cache-xml-file 	property	in	the	 geode.properties 	file.

3.	 Add	other	attributes	to	the	 geode.properties 	file	as	needed	for	the	local	system	architecture.

	Running	a	Client	Out	of	the	Box
If	you	start	a	client	without	any	configuration,	it	uses	any	attributes	set	programmatically	plus	any	hard-
coded	defaults	(listed	in		System	Properties).	Running	with	the	defaults	is	a	convenient	way	to	learn	the
operation	of	the	distributed	system	and	to	test	which	attributes	need	to	be	reconfigured	for	your
environment.

Running	based	on	defaults	is	not	recommended	for	production	systems,	as	important	components,	such
as	security,	might	be	overlooked.

©	Copyright	Pivotal	Software	Inc,	2013-2020 30 10.1

	

Configuring	the	Client	Cache
Client	caches	provide	the	framework	for	clients	to	store,	manage,	and	distribute	application	data.

A	cache	is	an	entry	point	for	access	to	VMware	GemFire®.	Through	the	cache,	clients	gain	access	to	the
VMware	GemFire®	caching	framework	for	data	loading,	distribution,	and	maintenance.

A	 Cache 	instance	allows	your	client	to	set	general	parameters	for	communication	between	a	cache	and
other	caches	in	the	distributed	system,	and	to	create	and	access	any	region	in	the	cache.

Regions	are	created	from	 Cache 	instances.	Regions	provide	the	entry	points	to	the	interfaces	for
instances	of	 Region 	and	 RegionEntry .

For	more	information	specific	to	your	client	programming	language,	see	the		C++	Client	API .

©	Copyright	Pivotal	Software	Inc,	2013-2020 31 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/configuring/cppdocs

	

Configuring	Regions
In	this	topic

	Programmatic	Region	Creation

	Declarative	Region	Creation

	Invalidating	and	Destroying	Regions

	Region	Access

	Getting	the	Region	Size

The	region	is	the	core	building	block	of	the	VMware	GemFire®	distributed	system.	All	cached	data	is
organized	into	data	regions	and	you	do	all	of	your	data	puts,	gets,	and	querying	activities	against	them.

In	order	to	connect	to	a	VMware	GemFire®	server,	a	client	application	must	define	a	region	that
corresponds	to	a	region	on	the	server,	at	least	in	name.	See		Data	Regions 	in	the	VMware	GemFire®
User	Guide	for	details	regarding	server	regions,	and		Region	Attributes	in	this	guide	for	client	region
configuration	parameters.

You	can	create	regions	either	programmatically	or	through	declarative	statements	in	a	 cache.xml 	file.
Programmatic	configuration	is	recommended,	as	it	keeps	the	configuration	close	at	hand	and	eliminates
an	external	dependency.	Region	creation	is	subject	to	attribute	consistency	checks.

	Programmatic	Region	Creation
To	create	a	region:

1.	 Instantiate	a	 CacheFactory 	and	use	it	to	create	a	cache.

2.	 The	cache	includes	an	instance	of	 PoolManager —use	it	to	create	a	connection	pool.

3.	 Use	cache	to	instantiate	a	 RegionFactory 	and	use	it	to	create	a	region,	specifying	any	desired
attributes	and	an	association	with	the	connection	pool.

C++	Region	Creation	Example

The	following	example	illustrates	how	to	create	two	regions	using	C++.

©	Copyright	Pivotal	Software	Inc,	2013-2020 32 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/regions/geodeman/basic_config/data_regions/chapter_overview.html

auto	cache	=	CacheFactory().create();

auto	examplePool	=	cache.getPoolManager()
				.createFactory()
				.addLocator("localhost",	40404)
				.setSubscriptionEnabled(true)
				.create("examplePool");

auto	clientRegion1	=	cache.createRegionFactory(RegionShortcut::PROXY)
		.setPoolName("examplePool")
		.create("clientRegion1");

	Declarative	Region	Creation
Declarative	region	creation	involves	placing	the	region’s	XML	declaration,	with	the	appropriate	attribute
settings,	in	a	 cache.xml 	file	that	is	loaded	at	cache	creation.

Like	the	programmatic	examples	above,	the	following	example	creates	two	regions	with	attributes	and	a
connection	pool:

<?xml	version="1.0"	encoding="UTF-8"?>
<client-cache
				xmlns="http://geode.apache.org/schema/cpp-cache"
				xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
				xsi:schemaLocation="http://geode.apache.org/schema/cpp-cache
						http://geode.apache.org/schema/cpp-cache/cpp-cache-1.0.xsd"
				version="1.0">
				<pool	name="examplePool"	subscription-enabled="true">
								<server	host="localhost"	port="40404"	/>
				</pool>
				<region	name="clientRegion1"	refid="PROXY">
								<region-attributes	pool-name="examplePool"/>
				</region>
				<region	name="clientRegion2"	refid="CACHING_PROXY">
								<region-attributes	pool-name="examplePool">
												<region-time-to-live>
																<expiration-attributes	timeout="120s"	action="invalidate"/>
												</region-time-to-live>
								</region-attributes>
				</region>
</client-cache>

The	 cache.xml 	file	contents	must	conform	to	the	XML	described	in	the	 cpp-cache-1.0.xsd 	file	provided	in
your	distribution’s	 xsds 	subdirectory	and	available	online	at		https://geode.apache.org/schema/cpp-

©	Copyright	Pivotal	Software	Inc,	2013-2020 33 10.1

https://geode.apache.org/schema/cpp-cache/cpp-cache-1.0.xsd

cache/cpp-cache-1.0.xsd .

	Invalidating	and	Destroying	Regions
Invalidation	marks	all	entries	contained	in	the	region	as	invalid	(with	null	values).	Destruction	removes
the	region	and	all	of	its	contents	from	the	cache.

		You	can	execute	these	operations	explicitly	in	the	local	cache	in	the	following	ways:

Through	direct	API	calls	from	the	client	using	
apache::geode::client::Region:invalidateRegion()

Through	expiration	activities	based	on	the	region’s	statistics	and	attribute	settings.

In	either	case,	you	can	perform	invalidation	and	destruction	as	a	local	or	a	distributed	operation.

A	local	operation	affects	the	region	only	in	the	local	cache.

A	distributed	operation	works	first	on	the	region	in	the	local	cache	and	then	distributes	the	operation
to	all	other	caches	where	the	region	is	defined.	This	is	the	proper	choice	when	the	region	is	no	longer
needed,	or	valid,	for	any	application	in	the	distributed	system.

If	the	region	on	the	server	is	configured	as	a	partitioned	region,	it	cannot	be	cleared	using	API	calls
from	the	client.

A	user-defined	cache	writer	can	abort	a	region	destroy	operation.	Cache	writers	are	synchronous
listeners	with	the	ability	to	abort	operations.	If	a	cache	writer	is	defined	for	the	region	anywhere	in	the
distributed	system,	it	is	invoked	before	the	region	is	explicitly	destroyed.

Whether	carried	out	explicitly	or	through	expiration	activities,	invalidation	and	destruction	cause	event
notification.

	Region	Access
You	can	use	 Cache::getRegion 	to	retrieve	a	reference	to	a	specified	region.

Cache::getRegion 	returns	 nullptr 	if	the	region	is	not	already	present	in	the	application’s	cache.	A	server
region	must	already	exist.

A	region	name	cannot	contain	these	characters:

Ineligible	Character	description Ineligible	Character

©	Copyright	Pivotal	Software	Inc,	2013-2020 34 10.1

whitespace space	or	tab

angle	brackets <			>

colon :

quote "

forward	slash	and	back	slash /			\

pipe	(vertical	bar) |

question	mark ?

asterisk *

Ineligible	Character	description Ineligible	Character

	Getting	the	Region	Size
The	 Region 	API	provides	a	 size 	method	that	gets	the	size	of	a	region.	For	client	regions,	this	gives	the
number	of	entries	in	the	local	cache,	not	on	the	servers.	See	the	 Region 	API	documentation	for	details.

©	Copyright	Pivotal	Software	Inc,	2013-2020 35 10.1

	

Registering	Interest	for	Entries
For	client	regions,	you	can	programmatically	register	interest	in	entry	keys	stored	on	a	cache	server
region.	A	client	region	receives	update	notifications	from	the	cache	server	for	the	keys	of	interest.

You	can	register	interest	for	specific	entry	keys	or	for	all	keys.	Regular	expressions	can	be	used	to	register
interest	for	keys	whose	strings	match	the	expression.	You	can	also	unregister	interest	for	specific	keys,
groups	of	keys	based	on	regular	expressions,	or	for	all	keys.

	Note:	Interest	registration	and	unregistration	are	symmetrical	operations.	Consequently,	you	cannot
register	interest	in	all	keys	and	then	unregister	interest	in	a	specific	set	of	keys.	Also,	if	you	first	register
interest	in	specific	keys	with	 registerKeys ,	then	call	 registerAllKeys ,	you	must	call	 unregisterAllKeys 	before
specifying	interest	in	specific	keys	again.

	Client	API	for	Registering	Interest
You	register	client	interest	through	the	C++	API.	The	C++	API	provides	the	 registerKeys ,	 registerAllKeys ,	and
registerRegex 	methods,	with	corresponding	unregistration	accomplished	using	the	 unregisterKeys ,	
unregisterAllKeys ,	and	 unregisterRegex 	methods.

The	 registerKeys ,	 registerRegex 	and	 registerAllKeys 	methods	have	the	option	to	populate	the	cache	with
the	registration	results	from	the	server.	The	 registerRegex 	and	 registerAllKeys 	methods	can	also	optionally
return	the	current	list	of	keys	registered	on	the	server.

	Setting	Up	Client	Notification
In	addition	to	the	programmatic	function	calls,	to	register	interest	for	a	server	region	and	receive	updated
entries	you	need	to	configure	the	region	with	the	 PROXY 	or	 CACHING_PROXY	RegionShortcut 	setting.	The
region’s	pool	should	have	 subscription-enabled=true 	set	either	in	the	client	XML	or	programmatically	via	a	
CacheFactory::setSubscriptionEnabled(true) 	API	call.	Otherwise,	when	you	register	interest,	you	will	get	an	
UnsupportedOperationException .

<region	name="listenerWriterLoader"	refid="CACHING_PROXY">
			...	

All	clients	that	have	subscriptions	enabled	track	and	drop	(ignore)	any	duplicate	notifications	received.
To	reduce	resource	usage,	a	client	expires	tracked	sources	for	which	new	notifications	have	not	been
received	for	a	configurable	amount	of	time.

©	Copyright	Pivotal	Software	Inc,	2013-2020 36 10.1

	Notification	Sequence

Notifications	invoke	 CacheListeners 	of	cacheless	clients	in	all	cases	for	keys	that	have	been	registered	on
the	server.	Similarly,	invalidates	received	from	the	server	invoke	 CacheListeners 	of	cacheless	clients.

If	you	register	to	receive	notifications,	listener	callbacks	are	invoked	irrespective	of	whether	the	key	is	in
the	client	cache	when	a	 destroy 	or	 invalidate 	event	is	received.

	Registering	Interest	for	Specific	Keys
You	register	and	unregister	interest	for	specific	keys	through	the	 registerKeys 	and	 unregisterKeys
functions.	You	register	interest	in	a	key	or	set	of	keys	by	specifying	the	key	name	using	the	programmatic
syntax	shown	in	the	following	example:

keys0.push_back(keyPtr1);
keys1.push_back(keyPtr3);
regPtr0->registerKeys(keys0);
regPtr1->registerKeys(keys1);	

The	programmatic	code	snippet	in	the	next	example	shows	how	to	unregister	interest	in	specific	keys:

regPtr0->unregisterKeys(keys0);
regPtr1->unregisterKeys(keys1);

	Registering	Interest	for	All	Keys
If	the	client	registers	interest	in	all	keys,	the	server	provides	notifications	for	all	updates	to	all	keys	in	the
region.	The	next	example	shows	how	to	register	interest	in	all	keys:

regPtr0->registerAllKeys();
regPtr1->registerAllKeys();

The	following	example	shows	a	code	sample	for	unregistering	interest	in	all	keys.

regPtr0->unregisterAllKeys();
regPtr1->unregisterAllKeys();

©	Copyright	Pivotal	Software	Inc,	2013-2020 37 10.1

	Registering	Interest	Using	Regular	Expressions
The	 registerRegex 	function	registers	interest	in	a	regular	expression	pattern.	The	server	automatically
sends	the	client	changes	for	entries	whose	keys	match	the	specified	pattern.

Keys	must	be	strings	in	order	to	register	interest	using	regular	expressions.

The	following	example	shows	interest	registration	for	all	keys	whose	first	four	characters	are	 Key- ,
followed	by	any	string	of	characters.	The	characters	 .* 	represent	a	wildcard	that	matches	any	string.

regPtr1->registerRegex("Key-.*");

To	unregister	interest	using	regular	expressions,	you	use	the	 unregisterRegex 	function.	The	next	example
shows	how	to	unregister	interest	in	all	keys	whose	first	four	characters	are	 Key- ,	followed	by	any	string
(represented	by	the	 .* 	wildcard).

regPtr1->unregisterRegex("Key-.*");

	Register	Interest	Scenario
In	this	register	interest	scenario,	a	cache	listener	is	used	with	a	cacheless	region	that	has	
subscription-enabled 	set	to	 true .	The	client	region	is	configured	with	caching	disabled;	client	notification	is
enabled;	and	a	cache	listener	is	established.	The	client	has	not	registered	interest	in	any	keys.

When	a	value	changes	in	another	client,	it	sends	the	event	to	the	server.	The	server	will	not	send	the	event
to	the	cacheless	client,	even	though	 client-notification 	is	set	to	 true .

To	activate	the	cache	listener	so	the	cacheless	region	receives	updates,	the	client	should	explicitly
register	interest	in	some	or	all	keys	by	using	one	of	the	API	calls	for	registering	interest.	This	way,	the
client	receives	all	events	for	the	keys	to	which	it	has	registered	interest.	This	applies	to	Java-based	clients
as	well	as	non-Java	clients.

©	Copyright	Pivotal	Software	Inc,	2013-2020 38 10.1

	

Region	Attributes
Region	attributes	govern	the	automated	management	of	a	region	and	its	entries.

Region	attribute	settings	determine	where	the	data	resides,	how	the	region	is	managed	in	memory,	and
the	automatic	loading,	distribution,	and	expiration	of	region	entries.

	Specifying	Region	Attributes
Specify	region	attributes	before	creating	the	region.	You	can	do	this	either	through	the	API	or	through	the
declarative	XML	file.	The	API	includes	classes	for	defining	a	region’s	attributes	before	creation	and	for
modifying	some	attributes	after	creation.	For	details,	see	the	API	for	 RegionShortcut ,	 RegionAttributes ,	
RegionAttributesFactory ,	and	 AttributesMutator .

	Region	Shortcuts
VMware	GemFire®	provides	predefined,	shortcut	region	attributes	settings	for	your	use	in	 RegionShortcut .
The	shortcuts	are:

PROXY

does	not	store	data	in	the	client	cache,	but	connects	the	region	to	the	servers.

CACHING_PROXY

stores	data	in	the	client	cache	and	connects	the	region	to	the	servers.

CACHING_PROXY_ENTRY_LRU

stores	data	in	the	client	cache	and	connects	the	region	to	the	servers.	Limits	the	amount	of
data	stored	locally	in	the	client	to	a	default	limit	of	100,000	entries	by	ejecting	the	least
recently	used	(LRU)	entries.

LOCAL

stores	data	in	the	client	cache	and	does	not	connect	the	region	to	the	servers.	This	is	a	client-
side-only	region.

LOCAL_ENTRY_LRU

©	Copyright	Pivotal	Software	Inc,	2013-2020 39 10.1

stores	data	in	the	client	cache	and	does	not	connect	the	region	to	the	servers.	This	is	a	client-
side-only	region.	Limits	the	amount	of	data	stored	locally	in	the	client	to	a	default	limit	of
100,000	entries	by	ejecting	the	least	recently	used	(LRU)	entries.

©	Copyright	Pivotal	Software	Inc,	2013-2020 40 10.1

	

Serializing	Data
Data	in	your	client	application’s	VMware	GemFire®	cache	must	be	serializable	to	be	shared	with	VMware
GemFire®	servers	and	other	VMware	GemFire®	clients.	VMware	GemFire®	provides	multiple	data
serialization	options	for	storage	and	transmittal	between	processes,	of	which			VMware	GemFire®
Portable	Data	eXchange	(PDX)	serialization)	offers	the	best	combination	of	versatility	and	ease-of-use
for	most	applications.

To	learn	more	about	other	serialization	options,	see	the		Data	Serialization	section	in	the	VMware
GemFire®	User	Guide .

©	Copyright	Pivotal	Software	Inc,	2013-2020 41 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/serialization/serverman/developing/data_serialization/chapter_overview.html

	

VMware	GemFire®	PDX	Serialization
In	this	topic

	Portability	of	PDX	Serializable	Objects

	Reduced	Deserialization	of	Serialized	Objects

	Delta	Propagation	with	PDX	Serialization

	PDX	Serialization	Details

VMware	GemFire®’s	Portable	Data	eXchange	(PDX)	is	a	cross-language	data	format	that	can	reduce	the
cost	of	distributing	and	serializing	your	objects.

VMware	GemFire®	C++	PDX	serialization:

Is		interoperable	with	other	languages	by	VMware	GemFire®	–	no	need	to	program	a	Java-side
implementation

	Reduces	deserialization	overhead	by	providing	direct	field	access	on	servers	of	serialized	data,
without	full	deserialization.	Stores	data	in	named	fields	that	you	can	access	individually,	to	avoid	the
cost	of	deserializing	the	entire	data	object

	Works	with	VMware	GemFire®	delta	propagation

For	greater	control,	you	can	specify	individual	treatment	for	domain	objects	using	the	 PdxSerializable
interface.

	Portability	of	PDX	Serializable	Objects
When	you	create	a	 PdxSerializable 	object,	VMware	GemFire®	stores	the	object’s	type	information	in	a
central	registry.	The	information	is	passed	between	peers,	between	clients	and	servers,	and	between
distributed	systems.

When	using	PDX	serialization,	clients	automatically	pass	registry	information	to	servers	when	they	store	a
PdxSerializable 	object.	Clients	can	run	queries	and	functions	against	the	data	in	the	servers	without	the
servers	needing	to	know	anything	about	the	stored	objects.	One	client	can	store	data	on	the	server	to	be
retrieved	by	another	client,	with	the	server	never	needing	to	know	the	object	type.	This	means	you	can
code	your	C++	clients	to	manage	data	using	Java	servers	without	having	to	create	Java	implementations
of	your	C++	domain	objects.

©	Copyright	Pivotal	Software	Inc,	2013-2020 42 10.1

	Reduced	Deserialization	of	Serialized	Objects
The	access	methods	for	 PdxSerializable 	objects	allow	you	to	examine	specific	fields	of	your	domain	object
without	deserializing	the	entire	object.	This	can	reduce	deserialization	costs	significantly.	Client	C++	apps
can	run	queries	and	execute	functions	against	the	objects	in	the	server	caches	without	deserializing	the
entire	object	on	the	server	side.	The	query	engine	automatically	recognizes	PDX	objects	and	uses	only	the
fields	it	needs.

Clients	can	execute	Java	functions	on	server	data	that	only	access	parts	of	the	domain	objects	by	using	
PdxInstance.

Likewise,	peers	can	access	just	the	fields	needed	from	the	serialized	object,	keeping	the	object	stored	in
the	cache	in	serialized	form.

	Delta	Propagation	with	PDX	Serialization
You	can	use	VMware	GemFire®	delta	propagation	with	PDX	serialization.

	PDX	Serialization	Details
See	the	following	sections	for	details	on	implementing	PDX	serialization:

	Using	the	PdxSerializable	Abstract	Class

	PdxSerializable	Example

©	Copyright	Pivotal	Software	Inc,	2013-2020 43 10.1

	

Using	the	PdxSerializable	Abstract	Class
When	you	write	objects	using	PDX	serialization,	they	are	distributed	to	the	server	tier	in	PDX	serialized
form.	Domain	classes	need	to	inherit	the	 PdxSerializable 	abstract	class	to	serialize	and	de-serialize	the
object.

When	you	run	queries	against	the	objects	on	the	servers,	only	the	fields	you	specify	are	deserialized.	A
domain	class	should	serialize	and	de-serialize	all	its	member	fields	in	the	same	order	in	its	 toData 	and	
fromData 	functions.

Use	this	procedure	to	program	your	domain	object	for	PDX	serialization	using	the	 PdxSerializable 	abstract
class.

1.	 In	your	domain	class,	implement	 PdxSerializable .	For	example:

class	Order	:	public	PdxSerializable	{

2.	 Program	the	 toData 	function	to	serialize	your	object	as	required	by	your	application.	(See
markIdentityField 	in	a	later	step	for	an	optimization	that	you	can	apply	to	this	code	sample.)

void	Order::toData(PdxWriter&	pdxWriter)	const	{
		pdxWriter.writeInt(ORDER_ID_KEY_,	order_id_);
		pdxWriter.writeString(NAME_KEY_,	name_);
		pdxWriter.writeShort(QUANTITY_KEY_,	quantity_);
}

If	you	also	use	PDX	serialization	in	Java	or	.NET	for	the	object,	serialize	the	object	in	the	same	way
for	each	language.	Serialize	the	same	fields	in	the	same	order	and	mark	the	same	identity	fields.

3.	 Program	the	 fromData 	function	to	read	your	data	fields	from	the	serialized	form	into	the	object’s
fields.

void	Order::fromData(PdxReader&	pdxReader)	{
		order_id_	=	pdxReader.readInt(ORDER_ID_KEY_);
		name_	=	pdxReader.readString(NAME_KEY_);
		quantity_	=	pdxReader.readShort(QUANTITY_KEY_);
}

In	your	 fromData 	implementation,	use	the	same	name	as	you	did	in	 toData 	and	call	the	read
operations	in	the	same	order	as	you	called	the	write	operations	in	your	 toData 	implementation.

©	Copyright	Pivotal	Software	Inc,	2013-2020 44 10.1

4.	 Optionally,	program	your	domain	object’s	 hashCode 	and	equality	functions.	When	you	do	so,	you
can	optimize	those	functions	by	specifying	the	identity	fields	to	be	used	in	comparisons.	

Marked	identity	fields	are	used	to	generate	the	 hashCode 	and	equality	functions	of
PdxInstance,	so	the	identity	fields	should	themselves	either	be	primitives,	or	implement	
hashCode 	and	 equals .	
The	 markIdentityField 	function	indicates	that	the	given	field	name	should	be	included	in	
hashCode 	and	equality	checks	of	this	object	on	a	server.	
Invoke	the	 markIdentityField 	function	directly	after	the	identity	field’s	 write* 	function.	
If	no	fields	are	set	as	identity	fields,	then	all	fields	will	be	used	in	 hashCode 	and	equality
checks,	so	marking	identity	fields	improves	the	efficiency	of	hashing	and	equality	operations.	
It	is	important	that	the	fields	used	by	your	equality	function	and	 hashCode 	implementations
are	the	same	fields	that	you	mark	as	identity	fields.

This	code	sample	expands	the	sample	from	the	description	of	the	 toData 	function,	above,	to
illustrate	the	use	of	 markIdentityField :

void	Order::toData(PdxWriter&	pdxWriter)	const	{
		pdxWriter.writeInt(ORDER_ID_KEY_,	order_id_);
		pdxWriter.markIdentityField(ORDER_ID_KEY_);

		pdxWriter.writeString(NAME_KEY_,	name_);
		pdxWriter.markIdentityField(NAME_KEY_);

		pdxWriter.writeShort(QUANTITY_KEY_,	quantity_);
		pdxWriter.markIdentityField(QUANTITY_KEY_);
}

©	Copyright	Pivotal	Software	Inc,	2013-2020 45 10.1

	

PdxSerializable	Example
The	native	client	release	contains	an	example	showing	how	a	client	application	can	register	for
serialization	of	custom	objects	using	the	C++	PdxSerializable	abstract	class.

The	example	is	located	in	 examples/cpp/pdxserializable .

The	example	defines	the	serializable	class,	 Orders ,	including	its	serialization	and	deserialization
methods	and	its	factory	method.	Once	these	pieces	are	in	place,	execution	is	simple:	the	main	routine	of
the	example	registers	the	serializable	class	then	performs	some	put	and	get	operations.

	

Execution

The	example	performs	a	sequence	of	operations,	displaying	simple	log	entries	as	they	run.

To	run	the	example,	follow	the	instructions	in	the	README.md	file	in	the	example	directory.

Review	the	source	code	in	the	example	directory	to	see	exactly	how	it	operates.

Begin	by	running	a	script	that	sets	up	the	server-side	environment	by	invoking	 gfsh 	commands	to
create	a	region,	a	locator,	and	a	server.

Run	the	example	client	application,	which	performs	the	following	steps:

Connects	to	the	server
Registers	the	PdxSerializable	class
Creates	orders
Stores	orders
Retrieves	orders

	

C++	Example

This	section	contains	code	snippets	showing	highlights	of	the	C++	PdxSerialiable	example.	They	are	not
intended	for	cut-and-paste	execution.	For	the	complete	source,	see	the	example	source	directory.

The	C++	example	defines	a	PdxSerializable	class	called	 Order 	that	inherits	from	the	 PdxSerializable
abstract	class.	An	 Order 	object	contains	three	fields:

©	Copyright	Pivotal	Software	Inc,	2013-2020 46 10.1

an	integer	 order_id

a	string	 name

a	short-int	 quantity

From	Order.hpp:

class	Order	:	public	PdxSerializable	{
	public:
	...

	private:
		int32_t	order_id_;
		std::string	name_;
		int16_t	quantity_;
};

Using	the	 PdxSerializable 	read	and	write	methods,	the	 Order 	class	defines	 fromData() 	and	 toData()
methods	that	perform	the	deserialization	and	serialization	operations,	respectively,	and	the	
createDeserializable() 	factory	method:

From	Order.cpp:

void	Order::fromData(PdxReader&	pdxReader)	{
		order_id_	=	pdxReader.readInt(ORDER_ID_KEY_);
		name_	=	pdxReader.readString(NAME_KEY_);
		quantity_	=	pdxReader.readShort(QUANTITY_KEY_);
}

void	Order::toData(PdxWriter&	pdxWriter)	const	{
		pdxWriter.writeInt(ORDER_ID_KEY_,	order_id_);
		pdxWriter.markIdentityField(ORDER_ID_KEY_);

		pdxWriter.writeString(NAME_KEY_,	name_);
		pdxWriter.markIdentityField(NAME_KEY_);

		pdxWriter.writeShort(QUANTITY_KEY_,	quantity_);
		pdxWriter.markIdentityField(QUANTITY_KEY_);
}

...

std::shared_ptr<PdxSerializable>	Order::createDeserializable()	{
		return	std::make_shared<Order>();
}

©	Copyright	Pivotal	Software	Inc,	2013-2020 47 10.1

The	C++	example	mainline	creates	a	cache,	then	uses	it	to	create	a	connection	pool	and	a	region	object
(of	class	 Region).

		auto	cacheFactory	=	CacheFactory();
		cacheFactory.set("log-level",	"none");
		auto	cache	=	cacheFactory.create();
		auto	poolFactory	=	cache.getPoolManager().createFactory();

		poolFactory.addLocator("localhost",	10334);
		auto	pool	=	poolFactory.create("pool");
		auto	regionFactory	=	cache.createRegionFactory(RegionShortcut::PROXY);
		auto	region	=	regionFactory.setPoolName("pool").create("custom_orders");

The	client	registers	the	PdxSerializable	class	that	was	created	in	Orders.cpp:

		cache.getTypeRegistry().registerPdxType(Order::createDeserializable);

The	client	then	instantiates	and	stores	two	 Order 	objects:

		auto	order1	=	std::make_shared<Order>(1,	"product	x",	23);
		auto	order2	=	std::make_shared<Order>(2,	"product	y",	37);

		region->put("Customer1",	order1);
		region->put("Customer2",	order2);

Next,	the	application	retrieves	the	stored	values,	in	one	case	extracting	the	fields	defined	in	the
serialization	code:

		if	(auto	order1retrieved	=
										std::dynamic_pointer_cast<Order>(region->get("Customer1")))	{
				std::cout	<<	"OrderID:	"	<<	order1retrieved->getOrderId()	<<	std::endl;
				std::cout	<<	"Product	Name:	"	<<	order1retrieved->getName()	<<	std::endl;
				std::cout	<<	"Quantity:	"	<<	order1retrieved->getQuantity()	<<	std::endl;
		}	else	{
				std::cout	<<	"Order	1	not	found."	<<	std::endl;
		}

The	application	retrieves	the	second	object	and	displays	it	without	extracting	the	separate	fields:

©	Copyright	Pivotal	Software	Inc,	2013-2020 48 10.1

		if	(region->existsValue("rtimmons"))	{
				std::cout	<<	"rtimmons's	info	not	deleted"	<<	std::endl;
		}	else	{
				std::cout	<<	"rtimmons's	info	successfully	deleted"	<<	std::endl;
		}

Finally,	the	application	closes	the	cache:

		cache.close();

©	Copyright	Pivotal	Software	Inc,	2013-2020 49 10.1

	

Remote	Queries
In	this	topic

	Remote	Query	Basics
	Query	language:	OQL

	Creating	Indexes

	Remote	Query	API
	Query

	Executing	a	Query	from	the	Client

	C++	Query	Example

Use	the	remote	query	API	to	query	your	cached	data	stored	on	a	cache	server.

	Remote	Query	Basics
Queries	are	evaluated	and	executed	on	the	cache	server,	and	the	results	are	returned	to	the	client.	You
can	optimize	your	queries	by	defining	indexes	on	the	cache	server.

Querying	and	indexing	operate	only	on	remote	cache	server	contents.

	Query	language:	OQL

VMware	GemFire®	provides	a	SQL-like	querying	language	called	OQL	that	allows	you	to	access	data
stored	in	VMware	GemFire®	regions.	OQL	is	very	similar	to	SQL,	but	OQL	allows	you	to	query	complex
objects,	object	attributes,	and	methods.

In	the	context	of	a	query,	specify	the	name	of	a	region	by	its	full	path,	starting	with	a	slash	(/).

The	query	language	supports	drilling	down	into	nested	object	structures.	Nested	data	collections	can	be
explicitly	referenced	in	the	FROM	clause	of	a	query.

A	query	execution	returns	its	results	as	either	a	 ResultSet 	or	a	 StructSet .

Query	language	features	and	grammar	are	described	in	the	VMware	GemFire®	manual	at		Querying .

	Creating	Indexes

©	Copyright	Pivotal	Software	Inc,	2013-2020 50 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/geodeman/developing/querying_basics/chapter_overview.html

Indexes	can	provide	significant	performance	gains	for	query	execution.	You	create	and	maintain	indexes
on	the	cache	server.	For	detailed	information	about	working	with	indexes	configured	on	a	cache	server,
see		Working	with	Indexes 	in	the	server’s	documentation.

	Remote	Query	API
This	section	gives	a	general	overview	of	the	interfaces	and	classes	that	are	provided	by	the	query
package	API.

	Query

You	must	create	a	 Query 	object	for	each	new	query.	The	 Query 	interface	provides	methods	for
managing	the	compilation	and	execution	of	queries,	and	for	retrieving	an	existing	query	string.

A	 Query 	is	obtained	from	a	 QueryService ,	which	is	obtained	from	one	of	two	sources:

To	create	a	 Query 	that	operates	on	the	VMware	GemFire®	server,	use
apache::geode::client::Pool::getQueryService() 	to	instantiate	a	 QueryService 	obtained	from	a	 Pool .

To	create	a	 Query 	that	operates	on	your	application’s	local	cache,	use
apache::geode::client::Cache::getQueryService() 	to	instantiate	a	 QueryService 	obtained	from	a	 Cache .

	Executing	a	Query	from	the	Client

The	essential	steps	to	create	and	execute	a	query	are:

1.	 Create	an	instance	of	the	 QueryService 	class.	If	you	are	using	the	pool	API	(recommended),	you
should	obtain	the	 QueryService 	from	the	pool.

2.	 Create	a	 Query 	instance	that	is	compatible	with	the	OQL	specification.

3.	 Use	the	 Query.execute() 	method	to	submit	the	query	string	to	the	cache	server.	The	server
remotely	evaluates	the	query	string	and	returns	the	results	to	the	client.

4.	 Iterate	through	the	returned	objects.

	C++	Query	Example

These	C++	code	excerpts	are	from	the	 examples/cpp/remotequery 	example	included	in	your	client
distribution.	See	the	example	for	full	context.

©	Copyright	Pivotal	Software	Inc,	2013-2020 51 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/geodeman/developing/query_index/query_index.html

Following	the	steps	listed	above,

1.	 Obtain	a	 QueryService 	object	from	the	connection	pool:

std::shared_ptr<QueryService>	queryService	=	nullptr;
queryService	=	pool->getQueryService();

2.	 Create	a	 Query 	object	by	calling	 QueryService.newQuery() ,	specifying	your	OQL	query	as	a	string
parameter:

auto	query	=	queryService->newQuery("SELECT	*	FROM	/custom_orders	WHERE	quantity	>	30");				

3.	 Execute	the	query.	Collect	the	query	output,	returned	as	either	a	 ResultSet 	or	a	 StructSet ,	and
iterate	through	the	results:

auto	queryResults	=	query->execute();

for	(auto&&	value	:	*queryResults)	{
		auto&&	order	=	std::dynamic_pointer_cast<Order>(value);
		std::cout	<<	order->toString()	<<	std::endl;
}

©	Copyright	Pivotal	Software	Inc,	2013-2020 52 10.1

	

Continuous	Queries
In	this	topic

	Continuous	Query	Basics

	Typical	Continuous	Query	Lifecycle

	Executing	a	Continuous	Query	from	the	Client
	C++	Continuous	Query	Example

The	C++	and	.NET	clients	can	initiate	queries	that	run	on	the	VMware	GemFire®	cache	server	and	notify
the	client	when	the	query	results	have	changed.	For	details	on	the	server-side	setup	for	continuous
queries,	see		How	Continuous	Querying	Works 	in	the	VMware	GemFire®	User	Guide.

	Continuous	Query	Basics
Continuous	querying	provides	the	following	features:

	Standard	VMware	GemFire®	native	client	query	syntax	and	semantics.	Continuous	queries	are
expressed	in	the	same	language	used	for	other	native	client	queries.	See		Remote	Queries.

	Standard	VMware	GemFire®	events-based	management	of	CQ	events.	The	event	handling	used	to
process	CQ	events	is	based	on	the	standard	VMware	GemFire®	event	handling	framework.

	Complete	integration	with	the	client/server	architecture.	CQ	functionality	uses	existing	server-to-
client	messaging	mechanisms	to	send	events.	All	tuning	of	your	server-to-client	messaging	also	tunes
the	messaging	of	your	CQ	events.	If	your	system	is	configured	for	high	availability	then	your	CQs	are
highly	available,	with	seamless	failover	provided	in	case	of	server	failure	(see		High	Availability	for
Client-to-Server	Communication).	If	your	clients	are	durable,	you	can	also	define	any	of	your	CQs	as
durable	(see		Durable	Client	Messaging).

	Interest	criteria	based	on	data	values.	Continuous	queries	are	run	against	the	region’s	entry	values.
Compare	this	to	register	interest	by	reviewing		Registering	Interest	for	Entries.

	Active	query	execution.	Once	initialized,	the	queries	operate	on	new	events.	Events	that	change	the
query	result	are	sent	to	the	client	immediately.

	Typical	Continuous	Query	Lifecycle
1.	 The	client	creates	the	CQ.	This	sets	up	everything	for	running	the	query	and	provides	the	client	with

a	 CqQuery 	object,	but	does	not	execute	the	CQ.	At	this	point,	the	query	is	in	a	 STOPPED state,

©	Copyright	Pivotal	Software	Inc,	2013-2020 53 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/serverman/developing/continuous_querying/how_continuous_querying_works.html
http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/preserving-data/high-availability-client-server.html
http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/preserving-data/durable-client-messaging.html

ready	to	be	closed	or	run.

2.	 The	client	initiates	the	CQ	with	an	API	call	to	one	of	the	 CqQuery	execute* 	methods.	This	puts	the
query	into	a	 RUNNING 	state	on	the	client	and	on	the	server.	The	server	remotely	evaluates	the
query	string,	and	optionally	returns	the	results	to	the	client.	 CqQuery	execute* 	methods	include:

CqQuery.execute()

CqQuery.executeWithInitialResults()

3.	 A	CQ	Listener	waits	for	events.	When	it	receives	events,	it	takes	action	accordingly	with	the	data	in
the	CqEvent.

4.	 The	CQ	is	closed	by	a	client	call	to	 CqQuery.close .	This	de-allocates	all	resources	in	use	for	the	CQ	on
the	client	and	server.	At	this	point,	the	cycle	could	begin	again	with	the	creation	of	a	new	 CqQuery

instance.

	Executing	a	Continuous	Query	from	the	Client
The	essential	steps	to	create	and	execute	a	continuous	query	are:

1.	 Create	an	instance	of	the	 QueryService 	class.	If	you	are	using	the	pool	API	(recommended),	you
should	obtain	the	 QueryService 	from	the	pool.

2.	 Define	a	CQ	Listener	(a	 CqListener)	to	field	events	sent	from	the	server.

3.	 Use	one	of	the	 CqQuery execute* 	methods	to	submit	the	query	string	to	the	cache	server.

4.	 The	server	remotely	evaluates	the	query	string,	then	monitors	those	results	and	notifies	the	client	if
they	change.

5.	 The	client	listens	for	changes	that	match	the	query	predicate.

6.	 Iterate	through	the	returned	objects.

7.	 When	finished,	close	down	the	continuous	query.

	C++	Continuous	Query	Example

These	C++	code	excerpts	are	from	the	 examples/cpp/continuousquery 	example	included	in	your	client
distribution.	See	the	example	for	full	context.

©	Copyright	Pivotal	Software	Inc,	2013-2020 54 10.1

Following	the	steps	listed	above,

1.	 Create	a	query	service:

auto	queryService	=	pool->getQueryService();

2.	 Define	a	CqListener:

class	MyCqListener	:	public	CqListener	{

3.	 Create	an	instance	of	your	CqListener	and	insert	it	into	a	CQ	attributes	object:

CqAttributesFactory	cqFactory;

auto	cqListener	=	std::make_shared<MyCqListener>();

cqFactory.addCqListener(cqListener);
auto	cqAttributes	=	cqFactory.create();

4.	 Create	a	Continuous	Query	using	the	query	service	and	the	CQ	attributes:

		auto	query	=	queryService->newCq(
		"MyCq",	"SELECT	*	FROM	/custom_orders	c	WHERE	c.quantity	>	30",
		cqAttributes);

5.	 Execute	the	query:

query->execute();

6.	 Wait	for	events	and	do	something	with	them.

©	Copyright	Pivotal	Software	Inc,	2013-2020 55 10.1

/*	Excerpt	from	the	CqListener	*/

/*	Determine	Operation	Type	*/
switch	(cqEvent.getQueryOperation())	{
case	CqOperation::OP_TYPE_CREATE:
		opStr	=	"CREATE";
		break;
case	CqOperation::OP_TYPE_UPDATE:
		opStr	=	"UPDATE";
		break;
case	CqOperation::OP_TYPE_DESTROY:
		opStr	=	"DESTROY";
		break;
default:
		break;
}

...

/*	Take	action	based	on	OP	Type	*/

7.	 When	finished,	close	up	shop.

query->execute();

...	(respond	to	events	as	they	arrive)

query->stop();
query->close();

cache.close();

©	Copyright	Pivotal	Software	Inc,	2013-2020 56 10.1

	

Security:	Authentication	and	Encryption
Most	security	configuration	takes	place	on	the	VMware	GemFire®	server.	The	server’s	security	framework
authenticates	clients	as	they	connect	to	a	cache	server	and	authorizes	client	cache	operations	using
developer-provided	implementations	for	authentication	and	authorization.

For	an	explanation	of	the	server-side	implementation	of	security	features,	see		Security 	in	the	VMware
GemFire®	User	Guide.

A	Native	Client	application	must	address	two	security	concerns	when	connecting	to	a	VMware	GemFire®
server:

		Authentication
The	Client	must	submit	its	authentication	credentials	to	the	server	using	the	developer-provided
authentication	implementation	expected	by	the	server.

		TLS/SSL	Client/Server	Communication	Encryption
Communication	between	client	and	server	should	be	encrypted	so	authentication	credentials	and
other	transmissions	cannot	be	viewed	by	third-parties.

©	Copyright	Pivotal	Software	Inc,	2013-2020 57 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/security/geodeman/managing/security/chapter_overview.html

	

Authentication
A	client	is	authenticated	when	it	connects	with	valid	credentials	to	a	VMware	GemFire®	cache	server	that
is	configured	with	the	client	authentication	callback.	For	details	on	the	server’s	role	in	authentication
and	what	it	expects	from	the	client,	see		Implementing	Authentication 	in	the	VMware	GemFire®	User
Guide.

In	your	application,	authentication	credentials	must	be	set	when	creating	the	cache.	In	practice,	this
means	setting	the	authentication	credentials	when	you	create	the	CacheFactory.

C++	Authentication	Example

In	this	C++	authentication	example,	the	 CacheFactory 	creation	process	sets	the	authentication	callback:

		auto	cacheFactory	=	CacheFactory(config);
		auto	authInitialize	=	std::make_shared<UserPasswordAuthInit>();
		cacheFactory.set("log-level",	"none");
		cacheFactory.setAuthInitialize(authInitialize);

Credentials	are	implemented	in	the	 getCredentials 	member	function	of	the	 AuthInitialize 	abstract	class.

©	Copyright	Pivotal	Software	Inc,	2013-2020 58 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/security/geodeman/managing/security/implementing_authentication.html

class	UserPasswordAuthInit	:	public	AuthInitialize	{
public:
		UserPasswordAuthInit()	=	default;

		~UserPasswordAuthInit()	noexcept	override	=	default;

		std::shared_ptr<Properties>	getCredentials(
				const	std::shared_ptr<Properties>	&securityprops,
				const	std::string	&)	override	{
				std::shared_ptr<Cacheable>	userName;
				if	(securityprops	==	nullptr	||
						(userName	=	securityprops->find(SECURITY_USERNAME))	==	nullptr)	{
						throw	AuthenticationFailedException(
						"UserPasswordAuthInit:	user	name	"
						"property	[SECURITY_USERNAME]	not	set.");
				}

				auto	credentials	=	Properties::create();
				credentials->insert(SECURITY_USERNAME,	userName->toString().c_str());
				auto	passwd	=	securityprops->find(SECURITY_PASSWORD);
				if	(passwd	==	nullptr)	{
						passwd	=	CacheableString::create("");
				}
				credentials->insert(SECURITY_PASSWORD,	passwd->value().c_str());
				return	credentials;
		}

		void	close()	override	{	return;	}
};

©	Copyright	Pivotal	Software	Inc,	2013-2020 59 10.1

	

TLS/SSL	Client-Server	Communication	Encryption
This	section	describes	how	to	implement	TLS-based	communication	between	your	clients	and	servers
using	the	OpenSSL	encryption	utility.	When	configuring	TLS/SSL	security	for	your	client,	you	may	find	it
helpful	to	refer	to		The	SSL	section	of	the	VMware	GemFire®	User	Guide .

Set	Up	OpenSSL

The	open-source	OpenSSL	toolkit	provides	a	full-strength	general	purpose	cryptography	library	for
encrypting	client-server	communications.

Download	and	install	OpenSSL	1.1.1	for	your	specific	operating	system.

	Notes	for	Windows	users:

For	Windows	platforms,	you	can	use	either	the	regular	or	the	“Light”	version	of	SSL.

Use	a	64-bit	implementation	of	OpenSSL.

If	you	use	Cygwin,	do	not	use	the	OpenSSL	library	that	comes	with	Cygwin,	which	is	built	with
cygwin.dll 	as	a	dependency.	Instead,	download	a	fresh	copy	from	OpenSSL.

For	many	Windows	applications,	the	most	convenient	way	to	install	OpenSSL	is	to	use	 choco 	(see
	chocolatey.org)	to	install	the	“Light”	version	of	OpenSSL.

Step	1.	Create	keystores
The	VMware	GemFire®	server	requires	keys	and	keystores	in	the	Java	Key	Store	(JKS)	format	while	the
native	client	requires	them	in	the	clear	PEM	format.	Thus	you	need	to	be	able	to	generate	private/public
keypairs	in	either	format	and	convert	between	the	two	using	the	 keytool 	utility	and	the	 openssl
command.

Step	2.	Enable	SSL	on	the	server	and	on	the	client
1.	 On	the	server,	enable	SSL	for	the	 locator 	and	 server 	components,	as	the	SSL-enabled	client	must

be	able	to	communicate	with	both	locator	and	server	components.

2.	 On	the	client,	set	 ssl-enabled 	to	 true .

3.	 On	the	client,	set	 ssl-keystore 	and	 ssl-truststore 	to	point	to	your	keystore	files.	Paths	to	the	keystore
and	truststore	are	local	to	the	client.	See		Security-Related	System	Properties 	for	a	description	of

©	Copyright	Pivotal	Software	Inc,	2013-2020 60 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/security/serverman/managing/security/ssl_overview.html
https://chocolatey.org/packages/OpenSSL.Light
http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/security/security-systemprops.html#security

these	properties.

Starting	and	stopping	the	client	and	server	with	SSL	in	place

Before	you	start	and	stop	the	client	and	server,	make	sure	you	configure	the	native	client	with	the	SSL
properties	as	described	and	with	the	servers	or	locators	specified	as	usual.

Specifically,	ensure	that:

The	OpenSSL	and	VMware	GemFire®	DLLs	are	in	the	right	environment	variables	for	your	system:	
PATH 	for	Windows,	and	 LD_LIBRARY_PATH 	for	Unix.

You	have	generated	the	keys	and	keystores.

You	have	set	the	system	properties.

For	details	on	stopping	and	starting	locators	and	cache	servers	with	SSL,	see		Starting	Up	and	Shutting
Down	Your	System .

The	VMware	GemFire®	Native’s	libcryptoImpl	found	in	/lib	must	be	linked	at	compile	time.	This	binary	is
used	to	interact	with	OpenSSL.	Link	libcryptoImpl,	native	client,	and	your	application	code.	We	highly
recommend	using	cmake.

	Example	locator	start	command

Ensure	that	all	required	SSL	properties	are	configured	in	your	server’s	 geode.properties 	file.	Then	start	your
locator	as	follows:

gfsh>start	locator	--name=my_locator	--port=12345	--dir=.	\
--security-properties-file=/path/to/your/geode.properties

	Example	locator	stop	command

gfsh>stop	locator	--port=12345	\
--security-properties-file=/path/to/your/geode.properties

	Example	server	start	command

Again,	ensure	that	all	required	SSL	properties	are	configured	in	 geode.properties .	Then	start	the	server
with:

©	Copyright	Pivotal	Software	Inc,	2013-2020 61 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/security/geodeman/configuring/running/starting_up_shutting_down.html

gfsh>start	server	--name=my_server	--locators=hostname[12345]	\
--cache-xml-file=server.xml	--log-level=fine	\
--security-properties-file=/path/to/your/geode.properties

	Example	server	stop	command

gfsh>stop	server	--name=my_server

©	Copyright	Pivotal	Software	Inc,	2013-2020 62 10.1

	

Function	Execution
In	this	topic

	Server-side	Requirements

	Client-side	Requirements

	How	Functions	Execute

	Processing	Function	Results

	Function	Execution	Example
	C++	Example

A	client	can	invoke	a	server-resident	function,	with	parameters,	and	can	collect	and	operate	on	the
returned	results.

	Server-side	Requirements
To	be	callable	from	your	client,	a	function	must	be

resident	on	the	server,	and

registered	as	available	for	client	access.

See		Executing	a	Function	in	VMware	GemFire® 	in	the	VMware	GemFire®	User	Guide	for	details	on	how
to	write	and	register	server-resident	functions.

	Client-side	Requirements
The	client	must	connect	to	the	server	through	a	connection	pool	in	order	to	invoke	a	server-side	function.

	How	Functions	Execute
1.	 The	calling	client	application	runs	the	 execute 	method	on	the	 Execution 	object.	The	function

must	already	be	registered	on	the	servers.

2.	 The	function	is	invoked	on	the	servers	where	it	needs	to	run.	The	servers	are	determined	by	the	
FunctionService on* 	method	calls,	region	configuration,	and	any	filters.

3.	 If	the	function	has	results,	the	result	is	returned	in	a	 ResultCollector 	object.

©	Copyright	Pivotal	Software	Inc,	2013-2020 63 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/serverman/developing/function_exec/function_execution.html

4.	 The	client	collects	results	using	the	 ResultCollector.getResult() 	method.

In	every	client	where	you	want	to	execute	the	function	and	process	the	results:

Use	one	of	the	 FunctionService on* 	methods	to	create	an	 Execution 	object.	The	 on* 	methods,	
onRegion ,	 onServer 	and	 onServers ,	define	the	highest	level	where	the	function	is	run.

If	you	use	 onRegion 	you	can	further	narrow	your	run	scope	by	setting	key	filters.

A	function	run	using	 onRegion 	is	a	data	dependent	function	–	others	are	data-independent	functions.

You	can	run	a	data	dependent	function	against	partitioned	and	colocated	partitioned	regions.	From
the	client,	provide	the	appropriate	key	sets	to	the	function	call.

The	 Execution 	object	allows	you	to	customize	the	invocation	by:

Providing	a	set	of	data	keys	to	 withFilter 	to	narrow	the	execution	scope.	This	works	only	for	
onRegion 	Execution	objects	(data-dependent	functions).
Providing	function	arguments	to	 withArgs .
Defining	a	custom	 ResultCollector 	for	 withCollector .

Call	the	 Execution.execute() 	method	to	run	the	function.

	Processing	Function	Results
To	get	the	results	from	the	function	in	the	client	app,	use	the	result	collector	returned	from	the	function
execution.	The	 getResult 	methods	of	the	default	result	collector	block	until	all	results	are	received,	then
return	the	full	result	set.

The	client	can	use	the	default	result	collector.	If	the	client	needs	special	results	handling,	code	a	custom	
ResultsCollector 	implementation	to	replace	the	default.	Use	the	 Execution::withCollector 	method	to	specify
the	custom	collector.	To	handle	the	results	in	a	custom	manner:

1.	 Write	a	class	that	implements	the	 ResultCollector 	interface	to	handle	the	results	in	a	custom
manner.	The	methods	are	of	two	types:	one	handles	data	and	information	from	VMware	GemFire®
and	populates	the	results	set,	while	the	other	returns	the	compiled	results	to	the	calling	application:

addResult 	is	called	when	results	arrive	from	the	 Function 	methods.	Use	 addResult 	to
add	a	single	result	to	the	ResultCollector.
endResults 	is	called	to	signal	the	end	of	all	results	from	the	function	execution.
getResult 	is	available	to	your	executing	application	(the	one	that	calls	
Execution.execute)	to	retrieve	the	results.	This	may	block	until	all	results	are	available.
clearResults 	is	called	to	clear	partial	results	from	the	results	collector.	This	is	used	only	for

©	Copyright	Pivotal	Software	Inc,	2013-2020 64 10.1

highly	available	 onRegion 	functions	where	the	calling	application	waits	for	the	results.	If	the
call	fails,	before	VMware	GemFire®	retries	the	execution,	it	calls	 clearResults 	to	ready	the
instance	for	a	clean	set	of	results.

2.	 Use	the	 Execution 	object	in	your	executing	member	to	call	 withCollector ,	passing	your
custom	collector.

	Function	Execution	Example
The	native	client	release	contains	examples	of	function	execution	in	 ../examples/cpp/functionexecution .

The	example	begins	with	a	server-side	script	that	runs	 gfsh 	commands	to	create	a	region,	simply
called	“partition_region”.

The	function	is	preloaded	with	a	JAR	file	containing	the	server-side	Java	function	code.

The	function,	called	“ExampleMultiGetFunction”,	is	defined	in	the	 examples/utilities 	directory	of
your	distribution.	As	its	input	parameter,	the	function	takes	an	array	of	keys,	then	performs	a	 get 	on
each	key	and	returns	an	array	containing	the	results.

The	function	does	not	load	values	into	the	data	store.	That	is	a	separate	operation,	performed	in	these
examples	by	the	client,	and	does	not	involve	the	server-side	function.

As	prerequisites,	the	client	code	must	be	aware	of	the	connection	to	the	server,	the	name	of	the	function,
and	the	expected	type/format	of	the	input	parameter	and	return	value.

The	client:

creates	an	execution	object

provides	the	execution	object	with	a	populated	input	parameter	array

invokes	the	object’s	execute	method	to	invoke	the	server-side	function

If	the	client	expects	results,	it	must	create	a	result	object.	The	.NET	example	uses	a	built-in	result	collector
(IResultCollector.getResults())	to	retrieve	the	function	results.

The	example	creates	a	result	variable	to	hold	the	results	from	the	collector.

	C++	Example

This	section	contains	code	snippets	showing	highlights	of	the	C++	function	execution	example.	They	are
not	intended	for	cut-and-paste	execution.	For	the	complete	source,	see	the	example	source	directory.

©	Copyright	Pivotal	Software	Inc,	2013-2020 65 10.1

The	C++	example	creates	a	cache.

Cache	setupCache()	{
		return	CacheFactory()
						.set("log-level",	"none")
						.create();
}

The	example	client	uses	the	cache	to	create	a	connection	pool,

void	createPool(const	Cache&	cache)	{
		auto	pool	=	cache.getPoolManager()
						.createFactory()
						.addServer("localhost",	EXAMPLE_SERVER_PORT)
						.create("pool");
}

Then,	using	that	pool,	the	client	creates	a	region	with	the	same	characteristics	and	name	as	the	server-
side	region	(partition_region).

std::shared_ptr<Region>	createRegion(Cache&	cache)	{
		auto	regionFactory	=	cache.createRegionFactory(RegionShortcut::PROXY);
		auto	region	=	regionFactory.setPoolName("pool").create("partition_region");

		return	region;
}

The	sample	client	populates	the	server’s	datastore	with	values,	using	the	API	and	some	sample	key-value
pairs.

void	populateRegion(const	std::shared_ptr<Region>&	region)	{
		for	(int	i	=	0;	i	<	keys.size();	i++)	{
				region->put(keys[i],	values[i]);
		}
}

As	confirmation	that	the	data	has	been	stored,	the	sample	client	uses	the	API	to	retrieve	the	values	and
write	them	to	the	console.	This	is	done	without	reference	to	the	server-side	example	function.

©	Copyright	Pivotal	Software	Inc,	2013-2020 66 10.1

std::shared_ptr<CacheableVector>	populateArguments()	{
		auto	arguments	=	CacheableVector::create();
		for	(int	i	=	0;	i	<	keys.size();	i++)	{
				arguments->push_back(CacheableKey::create(keys[i]));
		}
		return	arguments;
}

Next,	the	client	retrieves	those	same	values	using	the	server-side	example	function.	The	client	code
creates	the	input	parameter,	an	array	of	keys	whose	values	are	to	be	retrieved.

std::vector<std::string>	executeFunctionOnServer(const	std::shared_ptr<Region>	region,
				const	std::shared_ptr<CacheableVector>	arguments)	{
		std::vector<std::string>	resultList;

The	client	creates	an	execution	object	using	 Client.FunctionService.OnRegion 	and	specifying	the	region.

		auto	functionService	=	FunctionService::onServer(region->getRegionService());

The	client	then	calls	the	server	side	function	with	its	input	arguments	and	stores	the	results	in	a	vector.

		if(auto	executeFunctionResult	=	functionService.withArgs(arguments).execute(getFuncIName)->getResult())	{
				for	(auto	&arrayList:	*executeFunctionResult)	{
						for	(auto	&cachedString:	*std::dynamic_pointer_cast<CacheableArrayList>(arrayList))	{
								resultList.push_back(std::dynamic_pointer_cast<CacheableString>(cachedString)->value());
						}
				}
		}	else	{
				std::cout	<<	"get	executeFunctionResult	is	NULL\n";
		}

		return	resultList;
}

It	then	loops	through	the	results	vector	and	prints	the	retrieved	values.

void	printResults(const	std::vector<std::string>&	resultList)	{
		std::cout	<<	"Result	count	=	"	<<	resultList.size()	<<	std::endl	<<	std::endl;
		int	i	=	0;
		for	(auto	&cachedString:	resultList)	{
				std::cout	<<	"\tResult["	<<	i	<<	"]="	<<	cachedString	<<	std::endl;
				++i;
		}

©	Copyright	Pivotal	Software	Inc,	2013-2020 67 10.1

©	Copyright	Pivotal	Software	Inc,	2013-2020 68 10.1

	

Transactions
In	this	topic

	Native	Client	Transaction	APIs

	Running	Native	Client	Transactions

	Client	Transaction	Examples
	C++	Example

The	Native	Client	API	runs	transactions	on	the	server	as	if	they	were	local	to	the	client	application.	Thus,
the	key	to	running	client	transactions	lies	in	making	sure	the	server	is	properly	configured	and
programmed.	For	complete	information	about	how	transactions	are	conducted	on	the	VMware	GemFire®
server,	see	the		Transactions	section	of	the	VMware	GemFire®	User	Guide .

	Native	Client	Transaction	APIs
The	API	for	distributed	transactions	has	the	familiar	relational	database	methods,	 begin ,	 commit ,	and	
rollback .	There	are	also	APIs	available	to	suspend	and	resume	transactions.

The	C++	classes	for	executing	transactions	are:

apache.geode.client.CacheTransactionManager

apache.geode.client.TransactionId

	Running	Native	Client	Transactions
The	syntax	for	writing	client	transactions	is	the	same	as	with	server	or	peer	transactions,	but	when	a
client	performs	a	transaction,	the	transaction	is	delegated	to	a	server	that	brokers	the	transaction.

Start	each	transaction	with	a	 begin 	operation,	and	end	the	transaction	with	a	 commit 	or	a	 rollback .

To	maintain	cache	consistency,	the	local	client	cache	is	not	used	during	a	transaction.	When	the
transaction	completes	or	is	suspended,	local	cache	usage	is	reinstated.

If	the	transaction	runs	on	server	regions	that	are	a	mix	of	partitioned	and	replicated	regions,	perform	the
first	transaction	operation	on	a	partitioned	region.	This	sets	the	server	data	host	for	the	entire
transaction.	If	you	are	using	PR	single-hop,	single-hop	will	be	applied	as	usual	to	this	first	operation.

©	Copyright	Pivotal	Software	Inc,	2013-2020 69 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/geodeman/developing/transactions/chapter_overview.html

In	addition	to	the	failure	conditions	common	to	all	transactions,	client	transactions	can	also	fail	if	the
transaction	delegate	fails.	If	the	delegate	performing	the	transaction	fails,	the	transaction	code	throws	a	
TransactionException .

	Client	Transaction	Examples
The	native	client	release	contains	a	transaction	example	in	 ../examples/cpp/transaction .

The	example	performs	a	sequence	of	operations,	displaying	simple	log	entries	as	they	run.

To	run	an	example,	follow	the	instructions	in	the	 README.md 	file	in	the	example	directory.

Review	the	source	code	in	the	example	directory	to	see	exactly	how	it	operates.

You	begin	by	running	a	script	that	sets	up	the	server-side	environment	by	invoking	 gfsh 	commands
to	create	a	region,	simply	called	“exampleRegion.”

You	run	the	example	client	application,	which	performs	the	following	steps:

Connects	to	the	server
Begins	a	transaction
Performs	some	 put 	operations
Commits	the	transaction

For	this	example,	the	transaction	code	has	these	characteristics:

To	introduce	the	possibility	of	failure,	values	are	randomized	from	0	to	9,	and	the	0	values	are
treated	as	unsuccessful.	The	transaction	is	retried	until	it	succeeds.
In	case	the	transaction	repeatedly	fails,	the	retry	loop	uses	a	counter	to	set	a	limit	of	5	retries.

	C++	Example

This	section	contains	code	snippets	showing	highlights	of	the	C++	transaction	example.	They	are	not
intended	for	cut-and-paste	execution.	For	the	complete	source,	see	the	example	source	directory.

The	C++	example	creates	a	cache,	then	uses	it	to	create	a	connection	pool.

		auto	cache	=	CacheFactory().set("log-level",	"none").create();
		auto	poolFactory	=	cache.getPoolManager().createFactory();

		poolFactory.addLocator("localhost",	10334);
		auto	pool	=	poolFactory.create("pool");
		auto	regionFactory	=	cache.createRegionFactory(RegionShortcut::PROXY);
		auto	region	=	regionFactory.setPoolName("pool").create("exampleRegion");

©	Copyright	Pivotal	Software	Inc,	2013-2020 70 10.1

The	example	application	gets	a	transaction	manager	from	the	cache	and	begins	a	transaction.

		auto	transactionManager	=	cache.getCacheTransactionManager();

		transactionManager->begin();

Within	the	transaction,	the	client	populates	data	store	with	10	values	associated	with	Key1	-	Key10.

						for	(auto&	key	:	keys)	{
								auto	value	=	getValueFromExternalSystem();
								region->put(key,	value);
						}

If	all	 put 	operations	succeed,	the	application	commits	the	transaction.	Otherwise,	it	retries	up	to	5	times
if	necessary.

		auto	retries	=	5;
		while	(retries--)	{
				try	{
						transactionManager->begin();
							...	//	PUT	OPERATIONS	...
						transactionManager->commit();
						std::cout	<<	"Committed	transaction	-	exiting"	<<	std::endl;
						break;
				}	catch	(...)	{
						transactionManager->rollback();
						std::cout	<<	"Rolled	back	transaction	-	retrying("	<<	retries	<<	")"	<<	std::endl;
				}
		}

©	Copyright	Pivotal	Software	Inc,	2013-2020 71 10.1

	

System	Properties
A	variety	of	system	properties	can	be	specified	when	a	client	connects	to	a	distributed	system,	either
programmatically	or	in	a	 geode.properties 	file.	See	 apache::geode::client::SystemProperties 	in	the		C++	API	docs

.

The	following	settings	can	be	configured:

		General	Properties
Basic	information	for	the	process,	such	as	cache	creation	parameters.

		Logging	Properties
How	and	where	to	log	system	messages.

		Statistics	Archiving	Properties
How	to	collect	and	archive	statistics	information.

		Durable	Client	Properties
Information	about	the	durable	clients	connected	to	the	system.

		System	Properties	for	Client	Authentication	and	Authorization
Information	about	various	security	parameters.

		System	Properties	for	High	Availability
System	properties	to	configure	periodic	acknowledgment	(ack).

The	following	tables	list	attributes	that	can	be	specified	programmatically	or	stored	in	the	 geode.properties
file	to	be	read	by	a	client.

	General	Properties

cache-xml-
file

Name	and	path	of	the	file	whose	contents	are	used	by	default	to
configure	a	cache	if	one	is	created.	If	not	specified,	the	client	starts	with
an	empty	cache,	which	is	populated	at	run	time.

no	default

heap-lru-
delta

The	percentage	of	entries	the	system	will	evict	each	time	it	detects	that	it
has	exceeded	the	heap-lru-limit.	This	property	is	used	only	if	
heap-lru-limit 	is	greater	than	0.

10	%

heap-lru-
limit

Maximum	amount	of	memory,	in	megabytes,	used	by	the	cache	for	all
regions.	If	this	limit	is	exceeded	by	 heap-lru-delta 	percent,	LRU
reduces	the	memory	footprint	as	necessary.	If	not	specified,	or	set	to	0,
memory	usage	is	governed	by	each	region’s	LRU	entries	limit,	if	any.

0

©	Copyright	Pivotal	Software	Inc,	2013-2020 72 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/configuring/cppdocs

conflate-
events

Client	side	conflation	setting,	which	is	sent	to	the	server. server

connect-
timeout

Amount	of	time	(in	seconds)	to	wait	for	a	response	after	a	socket
connection	attempt.

59

connection-
pool-size

Number	of	connections	per	endpoint 5

enable-
chunk-
handler-
thread

If	the	chunk-handler-thread	is	operative	(enable-chunk-handler=true),	it
processes	the	response	for	each	application	thread.	When	the	chunk
handler	is	not	operative	(enable-chunk-handler=false),	each	application
thread	processes	its	own	response.

false

disable-
shuffling-of-
endpoints

If	true,	prevents	server	endpoints	that	are	configured	in	pools	from	being
shuffled	before	use.

false

max-fe-
threads

Thread	pool	size	for	parallel	function	execution.	An	example	of	this	is	the
GetAll	operations.

2	*
number	of
logical
processors

max-socket-
buffer-size

Maximum	size	of	the	socket	buffers,	in	bytes,	that	the	client	will	try	to	set
for	client-server	connections.

65	*	1024

notify-ack-
interval

Interval,	in	seconds,	in	which	client	sends	acknowledgments	for
subscription	notifications.

1

notify-
dupcheck-
life

Amount	of	time,	in	seconds,	the	client	tracks	subscription	notifications
before	dropping	the	duplicates.

300

ping-
interval

Interval,	in	seconds,	between	communication	attempts	with	the	server	to
show	the	client	is	alive.	Pings	are	only	sent	when	the	 ping-interval
elapses	between	normal	client	messages.	This	must	be	set	lower	than	the
server’s	 maximum-time-between-pings .

10

redundancy-
monitor-
interval

Interval,	in	seconds,	at	which	the	subscription	HA	maintenance	thread
checks	for	the	configured	redundancy	of	subscription	servers.

10

tombstone-
timeout

Time	in	milliseconds	used	to	timeout	tombstone	entries	when	region
consistency	checking	is	enabled.

480000

	Logging	Properties

log-

©	Copyright	Pivotal	Software	Inc,	2013-2020 73 10.1

disk-
space-
limit

Maximum	amount	of	disk	space,	in	megabytes,	allowed	for	all	log	files,	current,
and	rolled.	If	set	to	0,	the	space	is	unlimited.

0

log-file
Name	and	full	path	of	the	file	where	a	running	client	writes	log	messages.	If	not
specified,	logging	goes	to	 stdout .

no
default
file

log-file-
size-
limit

Maximum	size,	in	megabytes,	of	a	single	log	file.	Once	this	limit	is	exceeded,	a	new
log	file	is	created	and	the	current	log	file	becomes	inactive.	If	set	to	0,	the	file	size
is	unlimited.

0

log-
level

Controls	the	types	of	messages	that	are	written	to	the	application’s	log.	These	are
the	levels,	in	descending	order	of	severity	and	the	types	of	message	they	provide:

	Error	(highest	severity)	is	a	serious	failure	that	will	probably	prevent	program
execution.

	Warning	is	a	potential	problem	in	the	system.

	Info	is	an	informational	message	of	interest	to	the	end	user	and	system
administrator.

	Config	is	a	static	configuration	message,	often	used	to	debug	problems	with
particular	configurations.

	Fine,	Finer,	Finest,	and	Debug	provide	tracing	information.	Only	use	these
with	guidance	from	technical	support.

Enabling	logging	at	any	level	enables	logging	for	all	higher	levels.

config

	Statistics	Archiving	Properties

statistic-
sampling-
enabled

Controls	whether	the	process	creates	a	statistic	archive	file. true

statistic-
archive-
file

Name	and	full	path	of	the	file	where	a	running	system	member	writes
archives	statistics.	If	 archive-disk-space-limit 	is	not	set,	the	client
appends	the	process	ID	to	the	configured	file	name,	like	
statArchive-PID.gfs .	If	the	space	limit	is	set,	the	process	ID	is	not
appended	but	each	rolled	file	name	is	renamed	to	statArchive-ID.gfs,
where	ID	is	the	rolled	number	of	the	file.

./statArchive.gfs

archive-
disk- Maximum	amount	of	disk	space,	in	gigabytes,	allowed	for	all	archive

©	Copyright	Pivotal	Software	Inc,	2013-2020 74 10.1

space-
limit

files,	current,	and	rolled.	If	set	to	0,	the	space	is	unlimited. 0

archive-
file-size-
limit

Maximum	size,	in	megabytes,	of	a	single	statistic	archive	file.	Once	this
limit	is	exceeded,	a	new	statistic	archive	file	is	created	and	the	current
archive	file	becomes	inactive.	If	set	to	0,	the	file	size	is	unlimited.

0

statistic-
sample-
rate

Rate,	in	seconds,	that	statistics	are	sampled.	Operating	system
statistics	are	updated	only	when	a	sample	is	taken.	If	statistic	archival
is	enabled,	then	these	samples	are	written	to	the	archive.

Lowering	the	sample	rate	for	statistics	reduces	system	resource	use
while	still	providing	some	statistics	for	system	tuning	and	failure
analysis.

1

enable-
time-
statistics

Enables	time-based	statistics	for	the	distributed	system	and	caching.
For	performance	reasons,	time-based	statistics	are	disabled	by
default.	See		System	Statistics .

false

	Durable	Client	Properties

Attribute Description Default

auto-
ready-
for-
events

Whether	client	subscriptions	automatically	receive	events	when	declaratively
configured	via	XML.	If	set	to	 false ,	event	startup	is	not	automatic	and	you
need	to	call	the	 Cache.ReadyForEvents() 	method	API	after	subscriptions	for
the	server	to	start	delivering	events.

true

durable-
client-id

Identifier	to	specify	if	you	want	the	client	to	be	durable. empty

durable-
timeout

Time,	in	seconds,	a	durable	client’s	subscription	is	maintained	when	it	is	not
connected	to	the	server	before	being	dropped.

300

	Security	Properties

The	table	describes	the	security-related	system	properties	for	native	client	authentication	and
authorization.

See		SSL	Client/Server	Communication.

System	Properties	for	Client	Authentication	and	Authorization

©	Copyright	Pivotal	Software	Inc,	2013-2020 75 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/101/geode-native-client-cpp/system-statistics/chapter-overview.html#concept_3BE5237AF2D34371883453E6A9474A79

security-
client-auth-
factory

Sets	the	key	for	the	 AuthInitialize 	factory	function. empty

security-
client-auth-
library

Registers	the	path	to	the	 securityImpl.dll 	library. empty

security-
client-
dhalgo

Diffie-Hellman	based	credentials	encryption	is	not	supported. null

security-
client-
kspath

Path	to	a	.PEM	file,	which	contains	the	public	certificates	for	all	Geode
cache	servers	to	which	the	client	can	connect	through	specified
endpoints.

null

ssl-enabled True	if	SSL	connection	support	is	enabled. empty

ssl-keystore
Name	of	the	.PEM	keystore	file,	containing	the	client’s	private	key.	Not	set
by	default.	Required	if	 ssl-enabled 	is	true.

ssl-
keystore-
password

Sets	the	password	for	the	private	key	.PEM	file	for	SSL. null

ssl-
truststore

Name	of	the	.PEM	truststore	file,	containing	the	servers’	public	certificate.
Not	set	by	default.	Required	if	 ssl-enabled 	is	true.

	High	Availability	Properties

notify-
ack-
interval

Minimum	period,	in	seconds,	between	two	consecutive	acknowledgment
messages	sent	from	the	client	to	the	server.

10

notify-
dupcheck-
life

Minimum	time,	in	seconds,	a	client	continues	to	track	a	notification	source	for
duplicates	when	no	new	notifications	arrive	before	expiring	it.

300

©	Copyright	Pivotal	Software	Inc,	2013-2020 76 10.1

	

Client	Cache	XML	Reference
This	section	documents	the	XML	elements	you	can	use	to	configure	your	VMware	GemFire®	native	client
application.

To	define	a	configuration	using	XML:

1.	 Set	cache	configuration	parameters	in	a	declarative	XML	file.	By	convention,	this	user	guide	refers
to	the	file	as	 cache.xml ,	but	you	can	choose	any	name.

2.	 Specify	the	filename	and	path	to	your	XML	configuration	file	by	setting	the	 cache-xml-file 	property	in
the	 geode.properties 	file.	If	you	do	not	specify	path,	the	application	will	search	for	the	file	in	its
runtime	startup	directory.

For	example:

cache-xml-file=cache.xml

When	you	run	your	application,	the	native	client	runtime	library	reads	and	applies	the	configuration
specified	in	the	XML	file.

The	declarative	XML	file	is	used	to	externalize	the	configuration	of	the	client	cache.	The	contents	of	the
XML	file	correspond	to	APIs	found	in	the apache::geode::client 	package	for	C++	applications,	and	the	
Apache::Geode::Client 	package	for	.NET	applications.

Elements	are	defined	in	the	Client	Cache	XSD	file,	named	 cpp-cache-1.0.xsd ,	which	you	can	find	in	your
native	client	distribution	in	the	 xsds 	directory,	and	online	at	
https://geode.apache.org/schema/cpp-cache/cpp-cache-1.0.xsd .

Cache	Initialization	File:	XML	Essentials

This	section	assumes	you	are	familiar	with	XML.	When	creating	a	cache	initialization	file	for	your	native
client	application,	keep	these	basics	in	mind:

Place	an	XML	prolog	at	the	top	of	the	file.	For	example:

<?xml	version="1.0"	encoding="UTF-8"?>

Quote	all	parameter	values,	including	numbers	and	booleans.	For	example:

©	Copyright	Pivotal	Software	Inc,	2013-2020 77 10.1

concurrency-level="10"
caching-enabled="true"

Some	types	are	specific	to	the	VMware	GemFire®	cache	initialization	file:

	Duration:	Time	specified	as	a	non-negative	integer	and	a	unit,	with	no	intervening	space.	The
recognized	units	are	 h ,	 min ,	 s ,	 ms ,	 us ,	and	 ns .	For	example:

idle-timeout	=	"5555ms"
statistic-interval	=	"10s"
update-locator-list-interval="5min"

	Expiration:	Complex	type	consisting	of	a	duration	(integer	+	unit)	and	an	action,	where	the	action	is
one	of	 invalidate ,	 destroy ,	 local-invalidate ,	or	 local-destroy .	For	example:

<expiration-attributes	timeout="20s"	action="destroy"/>
<expiration-attributes	timeout="10s"	action="invalidate"/>

	Library:	Complex	type	consisting	of	a	library	name	and	a	function	name.	Used	by	the	client	to	invoke
functions.	For	example:

<persistence-manager	library-name="SqLiteImpl"
	library-function-name="createSqLiteInstance">

Cache	Initialization	File	Element	Descriptions

This	section	shows	the	hierarchy	of	 <client-cache> 	sub-elements	that	you	use	to	configure	VMware
GemFire®	caches	and	clients.	The	top-level	element	in	this	syntax	is	 <client-cache> .

	 <client-cache>
							 <pool>
													 <locator>
													 <server>
							 <region>
													 <region-attributes>
																			 <region-time-to-live>
																			 <region-idle-time>
																			 <entry-time-to-live>
																			 <entry-idle-time>
																			 <partition-resolver>

©	Copyright	Pivotal	Software	Inc,	2013-2020 78 10.1

																			 <cache-loader>
																			 <cache-listener>
																			 <cache-writer>
																			 <persistence-manager>
							 <pdx>

In	the	descriptions,	elements	and	attributes	not	designated	“required”	are	optional.

	

<client-cache>	Element
The	<client-cache>	element	is	the	top-level	element	of	the	XSD	file.

Your	declarative	cache	file	must	include	a	schema	of	the	following	form:

<client-cache
	xmlns="http://geode.apache.org/schema/cpp-cache"
	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
	xsi:schemaLocation="http://geode.apache.org/schema/cpp-cache
			http://geode.apache.org/schema/cpp-cache/cpp-cache-1.0.xsd"
	version="1.0">
		...
</client-cache>

Attributes	of	<client-cache>

Attribute Description

version Required.	Must	be	“1.0”

Sub-elements	of	<client-cache>

<client-cache> 	must	contain	at	least	one	of	these	sub-elements:

Element Minimum	Occurrences Maximum	Occurrences

	<pool> 0 unbounded

	<region> 0 unbounded

	<pdx> 0 1

©	Copyright	Pivotal	Software	Inc,	2013-2020 79 10.1

	

<pool>	Element
The	<pool>	element	is	a	collection	of	the	connections	by	which	your	client	application	communicates
with	the	VMware	GemFire®	server.

A	connection	can	specify	either	a	locator	or	a	server.

A	 <pool> 	must	contain	at	least	one	connection,	locator	or	server,	and	can	contain	multiples	of	either
or	both.

Sub-elements	of	<pool>

A	 <pool> 	must	contain	at	least	one	sub-element	that	specifies	a	connection,	which	can	be	either	a	server
or	a	locator.	Multiples	of	either	or	both	types	are	permitted.

Element Minimum	Occurrences Maximum	Occurrences

	<locator> 0 unbounded

	<server> 0 unbounded

Attributes	of	<pool>

Attribute Description Default

name
String.	Required.	Name	of	the	pool,	used	when	connecting	regions	to
this	pool.

free-
connection-
timeout

Duration.	The	amount	of	time	to	wait	for	a	free	connection	if	max-
connections	is	set	and	all	of	the	connections	are	in	use.

10s

load-
conditioning-
interval

Duration.	The	interval	at	which	the	pool	checks	to	see	if	a	connection	to
a	given	server	should	be	moved	to	a	different	server	to	improve	the	load
balance.

5min

min-
connections

Non-negative	integer.	The	minimum	number	of	connections	to	keep
available	at	all	times.	When	the	pool	is	created,	it	will	create	this	many
connections.	If	0	(zero),	then	connections	are	not	made	until	an
operation	is	performed	that	requires	client-to-server	communication.

1

Integer	>=	-1.	The	maximum	number	of	connections	to	be	created.	If	all

©	Copyright	Pivotal	Software	Inc,	2013-2020 80 10.1

max-
connections

of	the	connections	are	in	use,	an	operation	requiring	a	client	to	server
connection	blocks	until	a	connection	is	available.	A	value	of	-1	means	no
maximum.

-1

retry-attempts
Integer	>=	-1.	The	number	of	times	to	retry	an	operation	after	a	timeout
or	exception.	A	value	of	-1	indicates	that	a	request	should	be	tried
against	every	available	server	before	failing.

-1

idle-timeout
Duration.	Sets	the	amount	of	time	a	connection	can	be	idle	before	it
expires.	A	value	of	0	(zero)	indicates	that	connections	should	never
expire.

5s

ping-interval Duration.	The	interval	at	which	the	pool	pings	servers. 10s

read-timeout
Duration.	The	amount	of	time	to	wait	for	a	response	from	a	server	before
timing	out	and	trying	the	operation	on	another	server	(if	any	are
available).

10s

server-group
String.	Specifies	the	name	of	the	server	group	to	which	this	pool	should
connect.	If	the	value	is	null	or	""	then	the	pool	connects	to	all	servers.

""

socket-buffer-
size

String.	The	size	in	bytes	of	the	socket	buffer	on	each	connection
established.

32768

subscription-
enabled

Boolean.	When	 true ,	establish	a	server	to	client	subscription. false

subscription-
message-
tracking-
timeout

String.	The	amount	of	time	that	messages	sent	from	a	server	to	a	client
will	be	tracked.	The	tracking	is	done	to	minimize	duplicate	events.
Entries	that	have	not	been	modified	for	this	amount	of	time	are	expired
from	the	list.

900s

subscription-
ack-interval

String.	The	amount	of	time	to	wait	before	sending	an	acknowledgement
to	the	server	for	events	received	from	server	subscriptions.

100ms

subscription-
redundancy

String.	Sets	the	redundancy	level	for	this	pool’s	server-to-client
subscriptions.	An	effort	is	made	to	maintain	the	requested	number	of
copies	(one	copy	per	server)	of	the	server-to-client	subscriptions.	At
most,	one	copy	per	server	is	made	up	to	the	requested	level.	If	0	then	no
redundant	copies	are	kept	on	the	servers.

0

statistic-
interval

Duration.	The	interval	at	which	client	statistics	are	sent	to	the	server.	A
value	of	0	(zero)	means	do	not	send	statistics.

0ms
(disabled)

pr-single-hop-
enabled

String.	When	 true ,	enable	single	hop	optimizations	for	partitioned
regions.

true

Boolean.	Sets	the	thread	local	connections	policy	for	this	pool.	When	
true 	then	any	time	a	thread	goes	to	use	a	connection	from	this	pool	it

Attribute Description Default

©	Copyright	Pivotal	Software	Inc,	2013-2020 81 10.1

thread-local-
connections

will	check	a	thread	local	cache	and	see	if	it	already	has	a	connection	in
it.	If	so	it	will	use	it.	If	not	it	will	get	one	from	this	pool	and	cache	it	in	the
thread	local.	This	gets	rid	of	thread	contention	for	the	connections	but
increases	the	number	of	connections	the	servers	see.	When	 false 	then
connections	are	returned	to	the	pool	as	soon	as	the	operation	being
done	with	the	connection	completes.	This	allows	connections	to	be
shared	among	multiple	threads	keeping	the	number	of	connections
down.

false

multiuser-
authentication

Boolean.	Sets	the	pool	to	use	multi-user	secure	mode.	If	in	multiuser
mode,	then	app	needs	to	get	 RegionService 	instance	of	 Cache .

false

update-
locator-list-
interval

Duration.	The	frequency	with	which	client	updates	the	locator	list.	To
disable	this	set	its	value	to	 std::chrono::milliseconds::zero() .

Attribute Description Default

	

<locator>
<locator> 	is	a	sub-element	of	 <pool> 	that	defines	a	connection	to	a	VMware	GemFire®	locator,	specified
by	a	host	and	port	combination.

Attributes	of	<locator>

Attribute Description

host String.	Locator	host	name.

port Integer	in	the	range	0	-	65535,	inclusive.	Locator	port	number.

For	example:

<locator	host="stax01"	port="1001"	/>

	

<server>
<server> 	is	a	sub-element	of	 <pool> 	that	defines	a	connection	to	a	VMware	GemFire®	server,	specified	by
a	host	and	port	combination.

©	Copyright	Pivotal	Software	Inc,	2013-2020 82 10.1

Attributes	of	<server>

Attribute Description

host String.	Server	host	name.

port Integer	in	the	range	0	-	65535,	inclusive.	Server	port	number.

For	example:

<server	host="motown01"	port="2001"	/>

	

<region>
You	can	specify	0	or	more	regions	per	 <client-cache> .	There	is	no	maximum	limit	on	the	number	of	regions
a	 <client-cache> 	can	contain.

In	order	to	connect	to	a	VMware	GemFire®	server,	a	client	application	must	define	at	least	one	region
whose	name	corresponds	to	that	of	a	region	on	the	server.

Regions	can	be	nested.

Sub-elements	of	<region>

Use	the	 <region-attributes> 	sub-element	to	specify	most	of	the	characteristics	of	a	region.	Regions	may	be
nested.

Element Minimum	Occurrences Maximum	Occurrences

	<region-attributes> 0 1

<region> 0 unbounded

Attributes	of	<region>

You	can	specify	many	attributes	to	configure	a	region,	but	most	of	these	attributes	are	encapsulated	in
the		 <region-attributes> 	sub-element.	The	 <region> 	element	itself	has	only	two	attributes:	a	required	name
and	an	optional	reference	identifier.

©	Copyright	Pivotal	Software	Inc,	2013-2020 83 10.1

Attribute Description

name String.	Required.

refid String.

	

<region-attributes>
Specify	0	or	1	 <region-attributes> 	element	for	each	 <region> 	you	define.

If	you	specify	a	 <region-attributes> 	element,	you	must	specify	at	least	one	of	these	sub-elements.	When
more	than	one	sub-element	is	specified,	they	must	be	defined	in	this	order:

Element Type Minimum	Occurrences Maximum	Occurrences

	<region-time-to-live> expiration 0 1

	<region-idle-time> expiration 0 1

	<entry-time-to-live> expiration 0 1

	<entry-idle-time> expiration 0 1

	<partition-resolver> library 0 1

	<cache-loader> library 0 1

	<cache-listener> library 0 1

	<cache-writer> library 0 1

	<persistence-manager> list	of	properties 0 1

Attributes	of	<region-attributes>

Attribute Description Default

caching-
enabled

Boolean.	If	true,	cache	data	for	this	region	in	this	process.	If	false,	then	no
data	is	stored	in	the	local	process,	but	events	and	distributions	will	still
occur,	and	the	region	can	still	be	used	to	put	and	remove,	etc.

true

cloning-
enabled

Boolean.	Sets	cloning	on	region. false

scope Enumeration:	 local ,	 distributed-no-ack ,	 distributed-ack

initial- String.	Sets	the	initial	entry	capacity	for	the	region. 10000

©	Copyright	Pivotal	Software	Inc,	2013-2020 84 10.1

capacity

load-factor
String.	Sets	the	entry	load	factor	for	the	next	 RegionAttributes 	to	be
created.

0.75

concurrency-
level

String.	Sets	the	concurrency	level	of	the	next	 RegionAttributes 	to	be
created.

16

lru-entries-
limit

String.	Sets	the	maximum	number	of	entries	this	cache	will	hold	before	using
LRU	eviction.	A	return	value	of	zero,	0,	indicates	no	limit.	If	disk-policy	is	
overflows ,	must	be	greater	than	zero.

disk-policy
Enumeration:	 none ,	 overflows ,	 persist .	Sets	the	disk	policy	for	this
region.

none

endpoints String.	A	list	of	 servername:port-number 	pairs	separated	by	commas.

client-
notification

Boolean	true/false	(on/off) false

pool-name
String.	The	name	of	the	pool	to	attach	to	this	region.	The	pool	with	the
specified	name	must	already	exist.

concurrency-
checks-
enabled

Boolean:	true/false.	Enables	concurrent	modification	checks. true

id String.

refid String.

Attribute Description Default

	

<region-time-to-live>
<region-time-to-live>	specifies	how	long	this	region	remains	in	the	cache	after	the	last	create	or	update,
and	the	expiration	action	to	invoke	when	time	runs	out.	A	create	or	update	operation	on	any	entry	in	the
region	resets	the	region’s	counter,	as	well.	Get	(read)	operations	do	not	reset	the	counter.

Use	the	 <expiration-attributes> 	sub-element	to	specify	duration	and	expiration	action.			The	attributes	of
<expiration-attributes>	must	be	defined	in	this	order:

Attribute Description

timeout Duration,	specified	as	an	integer	and	units.	Required.

action Enumeration.	One	of:	 invalidate ,	 destroy ,	 local-invalidate ,	 local-destroy

©	Copyright	Pivotal	Software	Inc,	2013-2020 85 10.1

	

<region-idle-time>
<region-idle-time>	specifies	how	long	this	region	remains	in	the	cache	after	the	last	access,	and	the
expiration	action	to	invoke	when	time	runs	out.	The	counter	is	reset	after	any	access,	including	create,
put,	and	get	operations.	Access	to	any	entry	in	the	region	resets	the	region’s	counter,	as	well.

Use	the	 <expiration-attributes> 	sub-element	to	specify	duration	and	expiration	action.	The	attributes	of
<expiration-attributes>	must	be	defined	in	this	order:

Attribute Description

timeout Duration,	specified	as	an	integer	and	units.	Required.

action Enumeration.	One	of:	 invalidate ,	 destroy ,	 local-invalidate ,	 local-destroy

	

<entry-time-to-live>
<entry-time-to-live>	specifies	how	long	this	entry	remains	in	the	cache	after	the	last	create	or	update,	and
the	expiration	action	to	invoke	when	time	runs	out.	Get	(read)	operations	do	not	reset	the	counter.

Use	the	 <expiration-attributes> 	sub-element	to	specify	duration	and	expiration	action.	The	attributes	of
<expiration-attributes>	must	be	defined	in	this	order:

Attribute Description

timeout Duration,	specified	as	an	integer	and	units.	Required.

action Enumeration.	One	of:	 invalidate ,	 destroy ,	 local-invalidate ,	 local-destroy

	

<entry-idle-time>
<entry-idle-time>	specifies	how	long	this	entry	remains	in	the	cache	after	the	last	access,	and	the
expiration	action	to	invoke	when	time	runs	out.	The	counter	is	reset	after	any	access,	including	create,
put,	and	get	operations.

Use	the	 <expiration-attributes> 	sub-element	to	specify	duration	and	expiration	action.	The	attributes	of

©	Copyright	Pivotal	Software	Inc,	2013-2020 86 10.1

<expiration-attributes>	must	be	defined	in	this	order:

Attribute Description

timeout Duration,	specified	as	an	integer	and	units.	Required.

action Enumeration.	One	of:	 invalidate ,	 destroy ,	 local-invalidate ,	 local-destroy

	

<partition-resolver>
<partition-resolver>	identifies	a	function	by	specifying	 library-name 	and	 library-function-name .

A	partition	resolver	is	used	for	single-hop	access	to	partitioned	region	entries	on	the	server	side.	This
resolver	implementation	must	match	that	of	the	 PartitionResolver 	on	the	server	side.	See	the		API	Class
Reference 	for	the		PartitionResolver	class.

For	example:

<partition-resolver	library-name="appl-lib"
	library-function-name="createTradeKeyResolver"/>

	

<cache-loader>
<cache-loader>	identifies	a	cache	loader	function	by	specifying	 library-name 	and	 library-function-name .	See
the		API	Class	Reference 	for	the		CacheLoader	class.

	

<cache-listener>
<cache-listener>	identifies	a	cache	listener	function	by	specifying	 library-name 	and	 library-function-name .
See	the		API	Class	Reference 	for	the		CacheListener	class.

	

©	Copyright	Pivotal	Software	Inc,	2013-2020 87 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/cppdocs/hierarchy.html
http://docs-gemfire-native-cpp-staging.cfapps.io/cppdocs/hierarchy.html
http://docs-gemfire-native-cpp-staging.cfapps.io/cppdocs/hierarchy.html

<cache-writer>
<cache-writer>	identifies	a	cache	writer	function	by	specifying	 library-name 	and	 library-function-name .	See
the		API	Class	Reference 	for	the		CacheWriter	class.

	

<persistence-manager>
For	each	region,	if	the	disk-policy	attribute	is	set	to	 overflows ,	a	persistence-manager	plug-in	must
perform	cache-to-disk	and	disk-to-cache	operations.	See	the		API	Class	Reference 	for	the
	PersistenceManager	class.

<persistence-manager>	identifies	a	persistence	manager	function	by	specifying	 library-name 	and	
library-function-name .	You	can	also	specify	a	set	of	properties	to	be	passed	to	the	function	as	parameters.

The	sub-element	 <properties> 	is	a	sequence	of	0	or	more	 <property> 	elements.

Each	 <property> 	is	a	name-value	pair.	Where	the	attributes	must	be	specified	in	this	order:

name

value

For	example:

<region-attributes>
			<persistence-manager	library-name="libSqLiteImpl.so"	library-function-name="createSqLiteInstance">
						<properties>
									<property	name="PersistenceDirectory"	value="/xyz"/>
									<property	name="PageSize"	value="65536"/>
									<property	name="MaxPageCount"	value="1073741823"/>
						</properties>
			</persistence-manager>
</region-attributes>

	

<pdx>
Specifies	the	configuration	for	the	Portable	Data	eXchange	(PDX)	method	of	serialization.

©	Copyright	Pivotal	Software	Inc,	2013-2020 88 10.1

http://docs-gemfire-native-cpp-staging.cfapps.io/cppdocs/hierarchy.html
http://docs-gemfire-native-cpp-staging.cfapps.io/cppdocs/hierarchy.html

Attributes	of	<pdx>

Attribute Description

ignore-
unread-
fields

Boolean.	When	 true ,	do	not	preserve	unread	PDX	fields	during	deserialization.	You	can
use	this	option	to	save	memory.	Set	this	attribute	to	 true 	only	in	members	that	are	only
reading	data	from	the	cache.

read-
serialized

Boolean.	When	 true ,	PDX	deserialization	produces	a	 PdxInstance 	instead	of	an
instance	of	the	domain	class.

©	Copyright	Pivotal	Software	Inc,	2013-2020 89 10.1

	Table of Contents
	VMware GemFire® Native Client 10.1 Documentation
	GemFire Native Client 10.1 Release Notes
	What’s New in GemFire Native Client 10.1
	Issues Resolved in Native Client 10.1
	Issues Resolved in Native Client 10.1.3
	Issues Resolved in Native Client 10.1.2
	Issues Resolved in Native Client 10.1.1
	Issues Resolved in Native Client 10.1.0

	System Requirements
	GemFire Compatibility
	Application Compatibility
	Supported Platforms: C++ Client
	Supported Platforms: .NET Client
	.NET Compatibility
	Host Machine Requirements
	Windows Support
	Linux Support
	Disabling Syn Cookies on Linux

	PCF Support
	PCF .NET Requirements
	PCF C++ Requirements

	Software Requirements for Using SSL

	Upgrading a Native Client Application From Version 9 to Version 10
	Overview of Changes
	Compiler Upgrade
	Removal of Cache Singleton
	Serialization Interface Changes
	C++ Standardization
	Enum Classes
	Exceptions
	Object Oriented Design Patterns
	Initialization Files
	Other Changes
	.NET API Changes
	.NET Session State Provider
	C++ API Changes

	Installing the Native Library
	Installation Prerequisites
	Copy and Uncompress the Distribution Archive

	Getting Started with the Native Library
	Set Up Your Development Environment
	Establish Access to a VMware GemFire® Cluster
	Connecting to the Server
	Application Development Walkthrough

	Programming Examples

	Put/Get/Remove Example
	Put/Get/Remove Example Code

	Configuring a Client Application
	Programmatic Configuration vs XML Configuration
	Tables of properties
	High Availability with Server Redundancy

	System Level Configuration
	Attribute Definition Priority
	Search Path for Multiple Properties Files
	Defining Properties Programmatically
	About the geode.properties Configuration File
	Configuration File Locations
	Using the Default Sample File
	Configuring System Properties for the Client
	Running a Client Out of the Box

	Configuring the Client Cache
	Configuring Regions
	Programmatic Region Creation
	C++ Region Creation Example

	Declarative Region Creation
	Invalidating and Destroying Regions
	Region Access
	Getting the Region Size

	Registering Interest for Entries
	Client API for Registering Interest
	Setting Up Client Notification
	Registering Interest for Specific Keys
	Registering Interest for All Keys
	Registering Interest Using Regular Expressions
	Register Interest Scenario

	Region Attributes
	Specifying Region Attributes
	Region Shortcuts

	Serializing Data
	VMware GemFire® PDX Serialization
	Portability of PDX Serializable Objects
	Reduced Deserialization of Serialized Objects
	Delta Propagation with PDX Serialization
	PDX Serialization Details

	Using the PdxSerializable Abstract Class
	PdxSerializable Example
	Execution
	C++ Example

	Remote Queries
	Remote Query Basics
	Query language: OQL
	Creating Indexes

	Remote Query API
	Query
	Executing a Query from the Client
	C++ Query Example

	Continuous Queries
	Continuous Query Basics
	Typical Continuous Query Lifecycle
	Executing a Continuous Query from the Client
	C++ Continuous Query Example

	Security: Authentication and Encryption
	Authentication
	C++ Authentication Example

	TLS/SSL Client-Server Communication Encryption
	Set Up OpenSSL
	Step 1. Create keystores
	Step 2. Enable SSL on the server and on the client

	Starting and stopping the client and server with SSL in place
	Function Execution
	Server-side Requirements
	Client-side Requirements
	How Functions Execute
	Processing Function Results
	Function Execution Example
	C++ Example

	Transactions
	Native Client Transaction APIs
	Running Native Client Transactions
	Client Transaction Examples
	C++ Example

	System Properties
	General Properties
	Logging Properties
	Statistics Archiving Properties
	Durable Client Properties
	Security Properties
	High Availability Properties

	Client Cache XML Reference
	Cache Initialization File: XML Essentials
	Cache Initialization File Element Descriptions
	<client-cache> Element
	Attributes of <client-cache>
	Sub-elements of <client-cache>

	<pool> Element
	Sub-elements of <pool>
	Attributes of <pool>

	<locator>
	Attributes of <locator>
	<server>
	Attributes of <server>
	<region>
	Sub-elements of <region>
	Attributes of <region>

	<region-attributes>
	Attributes of <region-attributes>

	<region-time-to-live>
	<region-idle-time>
	<entry-time-to-live>
	<entry-idle-time>
	<partition-resolver>
	<cache-loader>
	<cache-listener>
	<cache-writer>
	<persistence-manager>
	<pdx>
	Attributes of <pdx>

